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Abstract. The population of Easter Island grew steadily for some time and then suddenly
decreased dramatically. This is not the sort of behavior predicted by the usual logistic differential
equation model of an isolated population or by the predator-prey model for a population using
resources. We present a mathematical model that predicts this type of behavior when the growth
rate of the resources, such as food and trees, is less than the rate at which resources are harvested.
Our model is expressed mathematically as a system of two first-order differential equations, both
of which are generalized logistic equations. Numerical solution of the equations, using realistic
parameters, predicts values very close to archaeological observations of Easter Island. We analyze
the model by using a coordinate transformation to blow up a singularity at the origin. Our analysis
reveals surprisingly rich dynamics including a degenerate Hopf bifurcation.
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1. The model. At one time inhabitants of Easter Island prospered. They were
sufficiently sophisticated, artistically and technologically, to build and transport the
enormous mysterious statues for which the island is famous. Yet when westerners
first came in contact with the island in the late eighteenth century, the inhabitants
lived meagerly in flimsy huts and there were no trees left on the island. The island
is extremely isolated, surrounded by over 1000 miles of ocean. Archaeological records
indicate that a small group, about 50 to 150 people, sailed to Easter Island between
400 and 700 AD. The population grew to about 10,000 between 1200 and 1500 AD. It
is thought that at this time the inhabitants built the biggest statues, had large boats,
sailed on the ocean for fishing, and used the abundant large trees for building. The
inhabitants overused the resources to the point of starvation and the island’s human
population decreased drastically. As a consequence of the population’s actions, the
large trees and other resources completely disappeared from the island. For a more
detailed discussion of the history of Easter Island, see [4] and [8].

Neither of the standard elementary types of population models, logistic models
and predator-prey models, predicts this sort of growth and decline. We present a
system of differential equations for an isolated population that uses self-replenishing
resources (such as trees, plants, and animals) which exhibits this booming and crash-
ing behavior. We prove that if the population uses resources too quickly relative to
the rate at which the resources replenish themselves, then the population will increase
and then disappear in finite time. If the population uses the resources more slowly,
then the population and resources do not disappear. A thorough characterization of
solutions for various parameter values is given in Figure 5.
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For our model, let P be a population and let R be the amount of resources. Our
model is given by (1). To derive these equations, we assume that the resources would
equilibrate in the absence of people. So when the population is zero the equation
for the resources should be the standard logistic equation with c,K > 0. As in the
standard logistic model we call c the growth rate of the resources and K the carrying
capacity. The constant c has units of inverse time; it is the fraction by which the
resource supply would increase per unit time were the resource supply far from the
island’s carrying capacity. The carrying capacity K has the same units as R; it is the
maximum resource supply that the island can support.

The term −hP accounts for the harvesting of the resources. The constant h, the
harvesting constant, has units of reciprocal time; it is on the order of the reciprocal
of the average lifetime of members of the population. The population P has units of
persons, as does R; one unit of the resources is the amount of resources required to
support a member of the population through his or her lifetime. We assume that the
resources are accessible so that the amount of harvesting is proportional only to the
population. This is a reasonable assumption for people on a small island.

At any given time the size of the population that our island can support depends
on the amount of resources on the island. Given our choice of units, the island has
the capacity to support R people. The evolution of the population is described by a
logistic equation with the carrying capacity equal to R.

dR

dt
= cR

(
1 − R

K

)
− hP,(1)

dP

dt
= aP

(
1 − P

R

)
.

The positive constant a has units of inverse time. The quantity aP is the net
growth rate of the population in circumstances in which resources are abundant.
Observe that when there are no resources (R = 0) the carrying capacity for the
population is zero. This makes sense, but it causes mathematical trouble in the
form of a singularity on the P -axis. The P/R term in (1) places our model in the
class of ratio-dependent models, a class that has recently received much attention in
the population biology literature. (See [9].) In fact, a discrete predator-prey model
analogous to ours has been used by Eberhardt in [5].

The main virtues of this model are that it incorporates a variable carrying ca-
pacity for the population and that it is based on a simple but sensible account of the
interaction between a population and its resources. Moreover, the predictions of this
model match archeological data for the population of Easter Island; the predictions
of standard models, such as the logistic model and the Lotka–Volterra model, do not.
Of course a model’s prediction matching data is not sufficient, though it is necessary,
to establish the model’s validity.

Our model is notable for the singularity in (1) when R = 0. Other models of
populations similar to that of Easter Island do not involve such singularities; recent
contributions to the literature have favored modified Lotka–Volterra models. An-
deries [1] presents a general form for such models:

dR

dt
= ρ(R) −H(R,P ),(2)

dP

dt
= G(H,R)P.
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Here, ρ(R) is the growth rate of the resources, H = H(R,P ) is the rate at which
resources are harvested, and G(H,R)P is the growth rate of the population; that is,
G is the difference between the per person birth and death rates.

Brander and Taylor [3] choose the logistic form ρ(R) = cR(1−R/K) that we use
in (1). Their harvesting rate is proportional to PR, while ours is simply proportional
to P . For G, they use the linear function G(H,R) = (b−d+φR), where b is the birth
rate, d is the death rate, and φ is a constant. (The function P (t), in Anderies’s work
and in the work of some other researchers in this field, is the labor pool, whereas we
have considered, instead, the entire population.)

The harvesting model of Brander and Taylor accounts for the fact that as re-
sources become scarce, less of the resources will be harvested per person. In our
model, by contrast, the same amount of resources is harvested per person in all con-
ditions. Consequently, our model does not capture details of low-resource conditions.
The harvesting model, in which the harvesting rate is proportional to the amount of
resources, seems to err in the other direction; it probably produces an underestimate
of the harvesting rate in conditions of scarce resources. The truth is probably some-
where between the two models. While scarcity should diminish the harvesting rate,
there will be a tendency for members of the population to maintain their standard of
living at the cost of depleting resources. For conditions of plenty, our model seems
sensible, and the assumption that the harvesting rate is proportional to the resources
probably overestimates the harvesting rate.

Brander and Taylor use a population growth rate model in which the difference
between the per person birth and death rates, (b − d + φR), which is negative in
the absence of resources, increases linearly with resources. In our population growth
model, the difference between the per person birth and death rates is a(1 − P/R),
which is proportional to the unused fraction of the island’s carrying capacity.

The per person growth rate of Brander and Taylor has the familiar mathematical
form of an exponential decay model in conditions of scarcity. In the absence of re-
sources, the population in the Brander and Taylor model dies out exponentially. Our
model has the population, along with the resources, die out exponentially in some
cases and in finite time in other cases. The appealing feature, in our model, of allow-
ing the population to die out in finite time comes at the cost of an unbounded per
person death rate. As resources increase, the model of Brander and Taylor has the
difference between the per person birth and death rates become arbitrarily large. In
our model, when resources are more than sufficient for the population, the difference
between the per person birth and death rates approaches a finite positive constant.

Brander and Taylor derive their model in the framework of neoclassical economics;
they justify the form of their harvesting rate by maximizing a Cobb–Douglas utility
function. Anderies [2] takes a similar approach. He improves on their model by
introducing a more general type of utility function, a Stone–Geary utility function.
In this way, Anderies allows for a structural change in the culture when resources
are scarce. He derives a continuous per person harvesting rate that is constant in
conditions of scarcity and approaches a smaller constant asymptotically like 1/R in
conditions of great abundance. This extra level of detail allows Anderies to fit the
population data of Easter Island better than Brander and Taylor. (See graphs in [1]
and [2].)

We have not embedded our model in neoclassical economic theory; we have simply
made some plausible assumptions. We shall show, in section 2, that with reasonable
values of the parameters, our model fits the archaeological data for Easter Island
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closely. In the rest of the paper, we elaborate upon what we consider our model’s
other virtue: its exceptionally rich dynamics. We expect that this feature of the
model makes it valuable as an example of the sorts of behavior that even a simple
two-dimensional population model can exhibit.

Discussions of mathematical models like ours—models of the interaction of a
human population and its resources—often include speculation about implications
of the analysis for the population of the earth as a whole. We shall do this too,
but with misgivings; models like ours do not capture the causes of the growth and
advancement of modern technological societies. For example, one of the premises of
our model is that resources grow and flourish independent of humans, that the only
effect that the humans have on the resources is that the humans harvest them. This
is a simplification even for the case of the Easter Islanders, who probably engaged in
some of the cultivation of resources that is a hallmark of technological civilizations.
For modern civilization, even the idea of resources as something given, apart from
humans, is wrong; human ingenuity turns natural materials and phenomena into
resources. Finally, at the most abstract level, models like ours do not even address the
essential issues of the survival of a species that does things like construct mathematical
models of its interaction with its environment.

That said, our model suggests a scenario not often considered for the overpopu-
lation of the Earth. If a population overuses its resources (for our model, if h > c),
the population will become large while the resources decrease. This situation results
in a gradual exponential population growth for an extended period of time and then
a sudden catastrophic elimination of the population. (See Figure 2.)

In section 2 we compare numerical approximations of solutions to archaeological
data of Easter Island. In section 3 we prove our main theorem and describe general
behavior of solutions.

2. Archaeological data of Easter Island and the world population. In
this section we compare the population of Easter Island and the population predicted
by a numerical solution of (1). We also provide a projection of the world population
under the assumption the humans are overusing their resources. It is well accepted
that numerical models do not provide accurate numbers for projecting human popula-
tions, in part because the constants (growth rate, etc.) for human populations depend
on ever-changing social and technological factors. However, mathematical models do
provide the approximate “shape” of the graph of a human population. We provide
the Easter Island model in part as confirmation that the shape of solutions to (1)
is reasonable for the human population and apply a solution with this shape to the
world’s human population.

A good summary of Easter Island history is given in Cohen’s excellent text [4] on
global population:

The best current estimate is that the population began with a
boatload of settlers in the first half millennium after Christ, perhaps
around 400 A.D. The population remained low until about A.D. 1100.
Growth then accelerated and the population then doubled every cen-
tury until about 1400. Slower growth continued until at most 6000 to
8000 people occupied the island around 1600. The maximum popu-
lation may have reached 10,000 people in A. D. 1680. A Decline then
set in. Jean François de Galaup Comte de La Pérouse, who visited
the island in 1786, estimated a population of 2000, and this estimate
is now accepted as roughly correct.



688 BILL BASENER AND DAVID S. ROSS

The graph of population as a function of time for a numerical approximation
to system 1 is shown in Figure 1. Note that the solution matches Cohen’s historical
estimate until around 1780. However, the population of Easter Island did not actually
disappear as it does in the model. We expect that once the population became small
enough, factors other than those considered in the model became important for the
population. For example, records suggest that the people on Easter Island changed
their diet to smaller animals and grasses after their larger ecosystem was destroyed.

In the numerical solution graphed in Figure 1 we used a = .0044, which is con-
sistent with historical observations of developing countries prior to the second world
war. We took the island’s carrying capacity, K, to be 70, 000. It has been estimated
(see [4]) that the amount of fertile land needed to supply food for one person is ap-
proximately 350 square meters, varying to a great degree depending on the type of
land and climate. The area of Easter Island is approximately 166,000,000 square me-
ters. If all of it were fertile and if it were farmed efficiently, there would be enough
food for 475,000 people. Since only some of the land is farmable, this makes our
approximation of K = 70, 000 reasonable. The values c = 0.001 and h = 0.025 are
more difficult to justify; we chose these values to fit the data. Note, however, that h
is on the order of the reciprocal of a lifespan as suggested in section 1.
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Fig. 1. The graph of population versus time for a solution to (1) modeling the population of
Easter Island. Each “x” is a data point approximated using archaeology.

We do not claim that Figure 1 proves that the population of Easter Island evolved
according to the dynamics of (1). But we think it suggests that these equations do
provide a reasonable model for an isolated population with limited self-replenishing
resources.

A numerical approximation of the world’s population using (1) is shown in Fig-
ure 2. All of the units are in billions. We assume that the Earth’s population in
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the year 2000 is 6 (billion). For this approximation we use the carrying capacity of
the Earth as K = 1000. Approximations to the carrying capacity of the Earth vary
widely, as do definitions of what the carrying capacity means. Estimations vary from
1 billion to 1,000 billion, (see [4]), and we choose the upper limit. The growth rate
of the Earth’s human population has been in the range from 1.73 to over 2 (again,
see [4]). We use a conservative estimate of a = 1.5. We choose c and h to model a
situation where humans are barely overusing resources, h = 0.6, c = 0.5. The model
suggests that the Earth’s human population will grow steadily until it reaches a max-
imum of 350 billion in the year 2350, and then over the next 20 years the population
will decrease until either extinction or another model, such as small local farmers,
becomes appropriate. As stated earlier, we make no claim to the accuracy of these
numbers other than that the prospect of a collapse of a population, instead of a grad-
ual leveling off, is an important scenario to consider. Recall that by Figure 5, the
long term behavior of the solution, extinction or equilibrium, depends only on the
harvesting rate and the growth rate of the resources.
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Fig. 2. The graphs of population and resources versus time for a solution to (1) modeling the
world’s population.

3. Analysis of the equations. Solutions of (1) fall into three qualitatively
different categories: solutions that are asymptotic to an equilibrium point with P,R >
0, solutions that approach the singularity at P = R = 0, and periodic solutions. A
characterization of solutions for various values of h and c is given in Figure 5.

The nullclines provide some insight into the behavior of the system. The nullcline
on which dP/dt = 0 consists of the lines

P = 0, P = R.
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The nullcline on which dR/dt = 0 is the parabola P = (c/h)R
(
1 − R

K

)
or

P =
−c

hK
R2 +

c

h
R

(this can be determined by setting dR/dt = 0 and solving for P ). These nullclines
are shown, along with the direction field and a numerically integrated solution, in
Figures 3 and 4. The parabola P = ( −c

hK )R2 + c
hR always intersects the line P = 0

at (0, 0) and (K, 0). The point (K, 0) is an equilibrium point, but the point (0, 0) is
a singular point. The parabola P = ( −c

hK )R2 + c
hR intersects the line P = R at (0, 0)

and, if c > h, at (Kc (c − h), K
c (c − h)). A characterization of solutions is given in

Figure 5.
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Fig. 3. The direction field for (1) is shown along with the nullclines and one numerically
integrated solution. The constants are a = .004, c = .01,K = 25000, h = .015. The initial condition
for the solution is P = 75, R = K, which were approximately the values when settlers first landed
on Easter Island.

We simplify the equations without loss of generality by rescaling time so that
a = 1. This puts the differential equations in the form

dP

dt
= P

(
1 − P

R

)
,(3)

dR

dt
= cR

(
1 − R

K

)
− hP.(4)
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Fig. 4. The direction field for (1) is shown along with the nullclines and one numerically
integrated solution. The constants are a = .004, c = .01,K = 25000, h = .005. The initial condition
for the solution is P = 75, R = K, which were approximately the values when settlers first landed
on Easter Island. (Note that the singularity along the P -axis causes improperly drawn vectors along
the P -axis.)

We are most concerned about solutions that approach the origin, solutions that
correspond to the disappearance of both the resources and the population. Standard
local analysis near (0, 0) is not possible because of the singularity there. We blow up
this singularity through a change of variables. Let

z = P,(5)

ξ = P/R.

The equations in these new coordinates are

z′ = z(1 − ξ),(6)

ξ′ = (h− 1)ξ2 + (1 − c)ξ +
c

K
z.

Note that the new system is free of singularities. We are most interested in values
of the new coordinates for which P and R are both positive. For these values the
change of variables is invertible. Note that the change of variables takes the first
quadrant in P,R-coordinates to the first quadrant in z, ξ-coordinates, it takes vertical
lines to themselves, and it is the identity mapping (z = P, ξ = R) along the parabola
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Fig. 5. The long-term behavior of solutions depending on the growth rate of resources, c, and
the harvesting rate, h. The number in each region indicates the corresponding proposition.

P = R2. Also, the region near (0, 0) with P,R > 0 has been “blown up” to the
region near the positive ξ-axis. In particular, if an orbit approaches (0,0) with P and
R asymptotically proportional to each other, the corresponding orbit in (z, ξ) will
approach the point (0,Θ), where Θ is the asymptotic proportion. If P approaches 0
faster than R, we have ξ → 0, and if P approaches 0 slower than P , we get ξ → ∞.
Behavior near the positive P -axis is obscured. However, behavior here is easy to
understand in P,R-coordinates: the equation for the resources reduces to a logistic
equation and the population grows.

We denote the first quadrant {(z, ξ) | z > 0, ξ > 0} by Ω and denote the region
{(z, ξ) | z ≥ 0, ξ > 0} by Ω∗. Although the positive ξ-axis does not correspond to
distinct values of P and R—the whole axis corresponds to P = R = 0—we need
it to analyze asymptotic behavior. Our main tool will be the Lyapunov function
λ : Ω → R ,

λ(z, ξ) = z2h−2

(
K

2c
ξ2 − K

c
ξ +

z

2h− 1
+

K

2c
− K(1 − h/c)

2h− 2

)
,

the properties of which will be established in Lemma 2. First we establish some
qualitative behavior of the system. By linearizing the system about the point {(z, ξ)}
we obtain the Jacobian

J =

[
1−ξ z
c

K
2(h− 1)ξ + 1 − c

]
.

The equilibrium points of our system are
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• (0, 0), at which J has eigenvalues 1 and 1 − c;
• (0, c−1

h−1 ), at which J has eigenvalues h−c
h−1 and c− 1;

• (K(1 − h/c), 1), at which J has eigenvalues
2h−c−1±

√
(2h−c−1)2−4(c−h)

2 .
The behavior of solutions depends in a surprisingly complex way on the constants

h and c. This dependence is summarized in Figure 5. Our main tools in establishing
this characterization are Lemma 2, which establishes the properties of a Lyapunov
function, and Lemma 3.

We shall begin our analysis with some lemmas about basic structural features of
the system. We shall then use these lemmas to characterize the qualitative behavior
of the system for various values of h and c.

Lemma 1. The regions Ω and Ω∗ are both positive invariant. That is, if a solution
is in one of these regions initially, then it remains in the region as long as it exists.

Proof. The ξ-axis is invariant and the vector field is pointing into the first quadrant
along the positive z-axis. Specifically, if z > 0 and ξ = 0, then z′ = z and ξ′ = c

K > 0.
If z = 0 and ξ > 0, then z′ = 0 and ξ′ = (h− 1)ξ2 + (1 − c)ξ.

Note that the regions are not negative invariant and that it is possible that orbits
become unbounded in finite time.

Lemma 2. Let

λ(z, ξ) = z2h−2

(
K

2c
ξ2 − K

c
ξ +

z

2h− 1
+

K

2c
− K(1 − h/c)

2h− 2

)
.

(a) If 2h− c− 1 = 0, λ is constant on trajectories in Ω.
(b) If 2h − c − 1 < 0, λ is strictly decreasing on trajectories in Ω that are not

equilibria.
(c) If 2h − c − 1 > 0, λ is strictly increasing on trajectories in Ω that are not

equilibria.
Proof. A direct (but not short) computation yields

λ′ = (2h− c− 1)(K/c)(ξ − 1)2z2h−2,

where ′ denotes the derivative with respect to time. Statement (a) follows directly
from this computation.

To prove (b), assume 2h − c − 1 < 0. Note that λ′ < 0 except when ξ = 1. By
differentiating twice more, we obtain

λ′′ = (2h− c− 1)
K

c
[2(ξ − 1)(ξ′)z2h−2 + (ξ − 1)2(2h− 2)z2h−1z′],

λ′′′ = (2h− c− 1)
K

c
[2(ξ′)(ξ′)z2h−2 + 2(ξ − 1)(ξ′′)z2h−2

+2(ξ − 1)(ξ′)(2h− 2)z2h−1z′ + 2(ξ − 1)(ξ′)(2h− 1)z2h−1z′

+(ξ − 1)2(2h− 2)(2h− 1)z2h(z′)2 + 2(ξ − 1)(ξ′)(2h− 1)z2h−1z′′].

When ξ = 1, we have λ′′ = 0 and λ′′′ is strictly negative unless ξ′ = 0. Since the only
points with ξ = 1 and ξ′ = 0 are equilibria, statement (b) follows. Statement (c) is
proven similarly.

If xe is an equilibrium point, a function L defined on a neighborhood of xe is
called a Lyapunov function if it has a minimum at xe and is strictly decreasing on all
trajectories other than xe. The existence of a Lyapunov function establishes xe as an
attractor or a stable equilibrium (see [7].) When the level sets of L are compact and
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xe is a global minimum, the point xe is a global attractor. Since the level sets of λ
are not all compact, we use topological methods to understand global behavior.

We say that an orbit γ(t) is positively bounded if the positive orbit O+(γ) =
{γ(t) | t > 0} is bounded. We say that γ is positively unbounded if O+(γ) is unbounded.
Lemma 2 allows us to prove Lemma 3, which characterizes the long term behavior of
positively bounded solutions.

Lemma 3. Suppose that 2h−c−1 �= 0. Any positively bounded solution beginning
in Ω is asymptotic to an equilibrium point (in Ω∗).

Proof. The ω-limit set of a solution curve is defined to be

ω(γ) = ∩s>0∪t>sγ(t),

where the overbar denotes closure. It is a standard result [7] that a point p is in ω(γ) if
and only if there is a sequence {tn} with tn → ∞ as n → ∞ such that γ(tn) → p. This
follows directly from the definition of ω(γ). Another standard result [7] is that any
positively bounded solution has a nonempty ω-limit set. This result follows from the
Bolzano–Weierstrass theorem applied to the set {γ(n) |n ∈ N }. Define the ωΩ-limit
set of γ by ωΩ(γ) = ω(γ) ∩ Ω.

For this proof let γ(t) = (z(t), ξ(t)) denote a positively bounded solution of the
differential equation beginning from an initial condition in Ω. Since λ is strictly
monotonic on trajectories and continuous on Ω, it must be constant on the ωΩ-limit
set of any solution. Hence the ωΩ-limit set of any solution is the (possibly empty)
union of equilibrium points.

We claim that if ωΩ(γ) contains an equilibrium point p ∈ Ω, then ω(γ) = p. For
any δ > 0 there is a time s ∈ R such that γ(t) ∈ Bδ(p) for all t > s. Were this not
so, then for every δ > 0 the set ∂(Bδ(p))∩ γ (where ∂(Bδ(p)) = {(z, ξ) | z2 + ξ2 = δ})
would be infinite and hence have a limit point in ∂(Bδ(p)), which we call pδ. Then
pδ ∈ ω(γ) for each δ, and the limit of pδ as δ → 0 is p. Since our equilibrium
points are isolated, infinitely many of these points are nonequilibrium points, which
is impossible.

We have shown that ω(γ) either is a single equilibrium point in Ω or is contained
in Ω∗ − Ω. We claim that if ω(γ) ⊆ Ω∗ − Ω, then it consists of a single equilibrium
point. Let p ∈ Ω∗ − Ω such that p is not an equilibrium point. Since Ω∗ − Ω is the
positive ξ-axis, p is either in the stable manifold or in the unstable manifold of an
equilibrium point in Ω∗ − Ω. If p is in the stable or unstable manifold of a sink or
source, then it cannot be an ω-limit point of an orbit in Ω. Suppose that p is in
the unstable manifold of an equilibrium point pe ∈ Ω∗ − Ω and p ∈ ω(γ) for some
γ(t). The unstable manifold of pe in Ω consists of an orbit extending into Ω. By the
Lambda lemma (see [6]), this orbit is in ω(λ), contradicting our earlier assertion that
the only points of ω(γ) in Ω are equilibrium points. Similarly, p cannot be in the
stable manifold of a saddle. Hence, an ω-limit set of a positively bounded orbit in Ω
is a single equilibrium point.

In the next two lemmas we characterize unbounded solutions.
Lemma 4. If h < 1, then all orbits are positively bounded.
Proof. Suppose that γ(t) is positively unbounded. We claim that either ξ → ∞

or z → ∞. Otherwise, there exist an M > 0 and a sequence t1, t2, . . . with tn → ∞ as
n → ∞ such that ||γ(tn)|| < M for all n. Then by the Bolzano–Weierstrass theorem
the set {γ(tn) |n ∈ N } would have a limit point x0 ∈ BM ((0, 0)). This limit point
would be in the ω-limit set of γ. By the argument in the proof of Lemma 3, γ(t)
would have to be asymptotic to x0 and γ would be bounded.
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The Poincaré sphere is a standard tool for analyzing the behavior of a two-
dimensional differential equation near infinity. (See [7, p. 169].) A simple calculation
using the Poincaré sphere shows that for h < 1 there are no orbits asymptotic to
infinity. In the notation of [7], P2(X,Y ) = −XY , Q2(X,Y ) = (h − 1)Y 2, and hence
the only equilibrium points on the circle at infinity are ±(1, 0, 0) and ±(0, 1, 0), and
none of these have a stable manifold which intersects Ω.

Lemma 5. If h > 1, then any positively unbounded orbit has the property that
z(t) → 0 and ξ(t) → ∞ as t → t∗ for some finite t∗. Moreover, if ξ > max{1, c−1

h−1}
at any time along an orbit, then the orbit is positively unbounded.

Proof. Assume h > 1. Consider an orbit with initial condition (z0, ξ0) with
z > 0 and ξ > max{1, c−1

h−1}. We will show that any such orbit has the property that
z(t) → 0 and ξ(t) → ∞ as t → t∗ < ∞. For such an orbit,

ξ′ = (h− 1)ξ

(
ξ +

1 − c

h− 1

)
+

c

K
z

> (h− 1)ξ

(
ξ +

1 − c

h− 1

)
> 0.

Hence, ξ(t) > max{1, c−1
h−1} and ξ′(t) > (h− 1)ξ(ξ + 1−c

h−1 ) > 0 for all t > 0.

The differential inequality ξ′ ≥ (h − 1)ξ(ξ + 1−c
h−1 ) implies that ξ behaves like a

solution of x′ = x2; it approaches infinity in finite time. More precisely, this differential
inequality can be integrated to yield

(
ξ(ξ0 + 1−c

h−1 )

ξ0(ξ + 1−c
h−1 )

) 1
1−c

> et,

which implies that ξ → ∞ before t = (ln(ξ0+
1−c
h−1 )−ln(ξ0))/(1−c) < ln(h−c

h−1 )/(1−c) <
∞.

We now show that z(t) → 0 for this orbit. Since z′ = z(1 − ξ) and ξ → ∞, it
follows that z(t) is eventually monotonic decreasing. Since z(t) is bounded below by
0, z(t) converges to some value z∗ ≥ 0. Since ξ′ = (h− 1)ξ2 + (1 − c)ξ + c

K z and z is
bounded, ξ(t) is eventually monotonic increasing. Without loss of generality, assume
that the initial condition for this orbit is (z0, ξ0) and that z is monotonic decreasing
and ξ is monotonic increasing for all t ≥ 0. The positive orbit (z(t), ξ(t)), t ≥ 0, then
corresponds to the graph of a function z = f(ξ), f : (ξ0,∞) → (z∗, z0). Then

df

dξ
=

dz/dt

dξ/dt
< 0,

and by the fundamental theorem of calculus

z0 − z∗ =

∫ ∞

ξ0

f ′(ξ)dξ(7)

=

∫ ∞

ξ0

f(ξ)(1 − ξ)

(h− 1)ξ2 + (1 − c)ξ + c
K f(ξ)

dξ.

Note that f ′(ξ) < 0 because ξ′ > 0 and z′ < 0. Since z∗ ≤ f(ξ) ≤ z0 for all ξ,

f(ξ)(1 − ξ)

(h− 1)ξ2 + (1 − c)ξ + c
K f(ξ)

<
z∗(1 − ξ)

(h− 1)ξ2 + (1 − c)ξ + c
K z0

.
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Observe that

lim
ξ→∞

z∗(1−ξ)
(h−1)ξ2+(1−c)ξ+ c

K z∗
−1
ξ

≥ z∗
(h− c)

≥ 0,

with equality if and only if z∗ = 0. If z∗ �= 0, the limit comparison test for indefinite
integrals implies that the integral in (7) diverges because the integral∫ ∞

ξ0

−1

ξ
dξ

diverges. This is a contradiction since z0 − z∗ is finite. Hence z(t) → z∗ = 0.
Now consider an orbit with initial condition (z0, ξ0) with z0 > 0 and ξ0 ≤

max{1, c−1
h−1}. We will show that if ξ(t) is bounded, then so is z(t). This will complete

the proof of the h > 1 portion of the lemma. Suppose, to obtain a contradiction,
that z(t) is unbounded for some orbit (z(t), ξ(t)). Since the set ξ′ = 1 is a parabola
opening to the left, there is some M such that if z > M , then ξ′ > 1. Since z(t) is
unbounded and z′(t) = z(ξ − 1) < z, there are times ta < tb with z(t) > M for all
t ∈ [ta, tb] and tb − ta > max{1, c−1

h−1}. Since Ω is positive invariant, ξ(ta) > 0. Hence,

ξ(tb) > ξ(tb) − ξ(ta) =

∫ tb

ta

ξ′dt >

∫ tb

ta

1dt > tb − ta > max

{
1,

c− 1

h− 1

}
.

Therefore, by the previous assertion, ξ(t) → ∞ and z(t) → 0. This proves that z(t)
is bounded for positive time for all orbits.

In the course of this proof, we have established an upper bound on the time
a population takes to disappear if the orbit begins in Ω with ξ > max{1, c−1

h−1}.
Specifically, ξ → ∞ before t = (ln(ξ0 + 1−c

h−1 )− ln(ξ0))/(1− c) < ln(h−c
h−1 )/(1− c). This

implies that P (t), R(t) → 0 while t < ln(h−c
h−1 )/(1 − c) < ∞.

Proposition 1. Suppose that h < c and h < 1. Then all solutions beginning in
Ω are asymptotic to the stable equilibrium at (z, ξ) = (Γ, 1), where Γ = K(1 − h/c).
Hence, in P,R-coordinates, all solutions beginning in the first quadrant are asymptotic
to the equilibrium at (P,R) = (Γ,Γ).

Proof. Since h < 1, by Lemma 4 every solution is bounded and approaches an
equilibrium solution. For these parameter values the equilibrium solutions in Ω∗ are
(0, 0), (K(1 − h/c), 1), and possibly (0, c−1

h−1 ). The only equilibrium with a nonempty
stable manifold in Ω is (K(1 − h/c), 1). Hence, all solutions are asymptotic to this
equilibrium.

Proposition 2. If h > c and h < 1, then (z, ξ) → (0, c−1
h−1 ) as t → ∞ for all

solutions. Hence, (P,R) → (0, 0) as t → ∞ with

P

R
∼ c− 1

h− 1
.

Proof. Since h < 1, by Lemma 4 all solutions are bounded. The only equilibrium
point in Ω∗ with a nonempty stable manifold in Ω is (0, c−1

h−1 ). By Lemma 3, all

solutions are asymptotic to (0, c−1
h−1 ).

An alternative proof of Proposition 2 is based on the Lyapunov function

L =
1

2

(
ξ +

1 − c

h− 1

)2

+
c

K
z
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Fig. 6. The phase planes with c = 1, h = 0.5, and K = 1 satisfying the hypothesis of Proposi-
tion 1. The nullclines are indicated by dashed lines.
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Fig. 7. The phase planes with c = 0.3, h = 0.6, and K = 1 satisfying the hypothesis of
Proposition 2. The same set of initial conditions is used for the solutions shown in each coordinate
system. The nullclines are indicated by dashed lines.

with

dL

dt
= (h− 1)ξ

(
ξ +

1 − c

h− 1

)2

+
c

K

(
h− c

h− 1

)
z,

which is negative when c < h < 1. Moreover, the level sets of L are compact. This
constitutes an alternate proof that (0, c−1

h−1 ) is a global attractor.
Proposition 3. If h > c and h > 1, then z → 0 and ξ → ∞ in finite time for

all solutions. Hence, (P,R) goes to the singularity at (0, 0) in finite time with

P

R
→ ∞.
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Fig. 8. The phase planes with c = 1, h = 2, and K = 1 satisfying the hypothesis of Proposi-
tion 3. The nullclines are indicated by dashed lines.

Proof. For our parameter values the only equilibrium solutions in Ω∗ are (0, 0)
and possibly (0, c−1

h−1 ). The equilibrium (0, 0) is unstable and (0, c−1
h−1 ) is unstable

if (0, c−1
h−1 ) ∈ Ω∗. Therefore, there are no solutions in Ω that are asymptotic to

an equilibrium solution. By Lemma 3, all solutions are unbounded. By Lemma 5,
z(t) → 0 and ξ(t) → ∞ in finite time for all solutions.

Proposition 4. Suppose that h < c, h > 1, and 2h − c − 1 > 0. For almost
every solution, z(t) → 0 and ξ(t) → ∞ in finite time. There is one solution with
ξ(t) → c−1

h−1 and one unstable equilibrium solution at (K(1 − h/c), 1).
In P,R-coordinates, almost every solution goes to the singularity at (0, 0) in finite

time with

P

R
→ ∞.

There is one solution that is asymptotic to (0, 0) with P/R ∼ c−1
h−1 and one unstable

equilibrium solution at (K(1 − h/c),K(1 − h/c)).
Proof. For our parameter values the equilibrium solutions in Ω∗ are (0, 0), (0, c−1

h−1 ),
and (K(1 − h/c), 1). The equilibrium at (0, 0) is a saddle with its stable manifold
contained in Ω∗ − Ω. The equilibrium at (0, c−1

h−1 ) is a saddle, and its stable mani-
fold is a solution extending into Ω. The equilibrium at (K(1 − h/c), 1) is unstable.
Therefore, all solutions except (K(1 − h/c), 1) and the stable manifold (0, c−1

h−1 ) are
unbounded by Lemma 3. By Lemma 5, z(t) → 0 and ξ(t) → ∞ in finite time for these
solutions.

Proposition 5. Suppose that h < c, h > 1, and 2h − c − 1 < 0. Let A denote
the region

0 < z <
−K(2h− 1)

2c

(
ξ2 − 2ξ +

2h− c− 1

h− 1

)
.

All orbits that intersect A approach the equilibrium point (Γ, 1) asymptotically; in
fact, these solutions constitute the basin of attraction of this sink. The single solution
stable manifold of (0, c−1

h−1 ) is a separatrix. All other solutions have the property that
z → 0, ξ → ∞ in finite time.
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Fig. 9. The phase planes with c = 2.5, h = 2, and K = 1 satisfying the hypothesis of Proposi-
tion 4. The nullclines are indicated by dashed lines.
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Fig. 10. The phase planes with c = 3, h = 1.5, and K = 1 satisfying the hypothesis of
Proposition 5. The nullclines are indicated by dashed lines.

In P,R-coordinates, there is an open set of orbits which are asymptotic to the
equilibrium at (P,R) = (Γ,Γ). There is an open set of orbits which approach (0, 0) in
finite time. There is a single solution that is asymptotic to (0, 0) with P/R ∼ c−1

h−1 as
t → ∞, and this solution is the separatrix between the two open sets.

Proof. By solving λ = 0 we obtain

z =
−K(2h− 1)

2c

(
ξ2 − 2ξ +

2h− c− 1

h− 1

)
.

It is easy to see that λ < 0 on A and (Γ, 1) ∈ A. Observe that the only equilibrium
point in A whose stable manifold has a nonempty intersection with A is (Γ, 1). Since
λ′(t) < 0 for all orbits in Ω by Lemma 2, all orbits are forward asymptotic to (Γ, 1).

The stable manifold of (0, c−1
h−1 ) in Ω is a single orbit. Denote this orbit by α(t).
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Near (0, c−1
h−1 ), there is a well-defined notion of above and below α. Orbits just above

α follow the unstable manifold of (0, c−1
h−1 ) up the ξ-axis. Eventually ξ(t) > c−1

h−1 for

these solutions. Since 2h−c−1 < 0, we have c−1 > 2(h−1) and c−1
h−1 = max{1, c−1

h−1}.
Therefore, ξ(t) max{1, c−1

h−1} for each of these solutions and z(t) → 0, ξ(t) → ∞ by
Lemma 5.

Orbits just below α follow the unstable manifold of (0, c−1
h−1 ) down the ξ-axis into

the region A, and these orbits are asymptotic to (Γ, 1). Therefore, α is the separatrix
between orbits asymptotic to (Γ, 1) and ones that approach (0,∞) in finite time. By
Lemmas 3 and 5, every orbit is asymptotic to (Γ, 1), (0, c−1

h−1 ), or (0,∞).
Proposition 6. Suppose that h < c, h > 1, and 2h − c − 1 = 0. Let A denote

the region

0 < z <
−K(2h− 1)

2c

(
ξ2 − 2ξ

)
.

There is a heteroclinic orbit from (0, 0) to (0, c−1
h−1 ). The boundary of A consists of this

orbit, a heteroclinic orbit in Ω∗ −Ω from (0, 0) to (0, c−1
h−1 ), and these two equilibrium

points. All orbits inside A are periodic. All orbits outside of A approach (0,∞) in
finite time.

In P,R-coordinates, there is a heteroclinic orbit from (K, 0) to (0, 0). This orbit
together with the orbit in the R-axis from (0, 0) to (K, 0) and these two equilibrium
points forms a limit cycle. Orbits within this limit cycle are all periodic. Orbits outside
of this limit cycle approach (0, 0) in finite time.
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Fig. 11. The phase planes with c = 6, h = 3.5, and K = 1 satisfying the hypothesis of
Proposition 6. The nullclines are indicated by dashed lines.

Proof. For this case, λ′(t) = 0 by Lemma 2, so λ is an integral of the system. We
want to show that it is a nondegenerate integral. The gradient of λ is

∇λ =

(
(2h− 2)z2h−3

(
K

2c
ξ2 − K

c
ξ +

z

2h− 1
+

K

2c
− K(1 − h/c)

2h− 2

)

+
z2h−2

2h− 1
, z2h−2K

c
(ξ − 1)

)
.
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Since ∂λ/∂ξ = z2h−2 K
c (ξ − 1), if ∇λ = 0 in Ω, then ξ = 1. Substituting ξ = 1 into

∂λ/∂z = 0 gives z = Γ. Hence, the only point in Ω where ∇λ = 0 is the equilibrium
(Γ, 1), and λ is nondegenerate.

From (3) with 2h− c− 1 = 0, solving λ = 0, we get

z =
−K(2h− 1)

2c

(
ξ2 − 2ξ

)
.

This is a parabola opening to the left. It intersects the ξ-axis at ξ = 0, c−1
h−1 . Since λ

is constant along solutions, this parabola is a heteroclinic orbit.

By direct computation, λ(1,Γ) = −Γ2h−1

(2h−2)(2h−1) . The orbits with −Γ2h−1

(2h−2)(2h−1) <

λ < 0 are nested periodic orbits in A that enclose convex regions containing (1,Γ).
This follows from differentiation of λ.

There are no equilibria outside A. Hence, by the Poincaré–Bendixson theorem,
all orbits outside of A are unbounded. By Lemma 5, all of these orbits approach
(0,∞) in finite time.

In conclusion we note that our system undergoes a degenerate Hopf bifurcation
when h < c, h > 1, and 2h− c− 1 changes sign. The equilibrium at (K(1 − h/c), 1)
changes from a spiral source for 2h − c − 1 > 0 to a spiral sink for 2h − c − 1 > 0.
When such a transition occurs through a classic Hopf bifurcation, a single periodic
orbit emerges from (or contracts to) the equilibrium point. The Hopf bifurcation
theorem (see [7]) identifies a large class of conditions under which such bifurcations
occur. Our system falls through the cracks of the theorem; the theorem applies to
all systems except those whose Taylor coefficients at the equilibrium satisfy a certain
equation, and the Taylor coefficients of our system satisfy that equation.
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