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ABSTRACT

Observations of sea surface and land–near-surface merged temperature anomalies are used to monitor
climate variations and to evaluate climate simulations; therefore, it is important to make analyses of these
data as accurate as possible. Analysis uncertainty occurs because of data errors and incomplete sampling
over the historical period. This manuscript documents recent improvements in NOAA’s merged global
surface temperature anomaly analysis, monthly, in spatial 5° grid boxes. These improvements allow better
analysis of temperatures throughout the record, with the greatest improvements in the late nineteenth
century and since 1985. Improvements in the late nineteenth century are due to improved tuning of the
analysis methods. Beginning in 1985, improvements are due to the inclusion of bias-adjusted satellite data.
The old analysis (version 2) was documented in 2005, and this improved analysis is called version 3.

1. Introduction

In recent years a number of extended historical ob-
served temperature analyses have been produced for
use in climate studies and climate monitoring (e.g., Sol-
omon et al. 2007). The extended sea surface tempera-
ture (SST) studies include Smith et al. (1996), Kaplan et
al. (1998), Rayner et al. (2003, 2006), and Smith and
Reynolds (2003, 2004), to name a few. Some recent
analyses of extended land–near-surface temperature
(LST) include Peterson and Vose (1997), Hansen et al.
(2001), and Jones and Moberg (2003), and references
therein. In addition, in response to the need for merged
SST and LST extended analyses with error estimates a
number of analyses have been produced (e.g., Parker et
al. 1994; Folland et al. 2001; Jones and Moberg 2003;
Smith and Reynolds 2005, hereafter SR05; Brohan et
al. 2006). This series of studies by different groups has
gradually increased knowledge of temperature data and
analysis methods. Collectively these studies have re-

sulted in more accurate analyses with better estimates
of the analysis uncertainties.

The purpose of this paper is to document improve-
ments in the merged extended temperature reconstruc-
tion of SR05. Using methods developed in earlier stud-
ies, that analysis separately reconstructed the SST
anomalies and the LST anomalies using statistical
methods. The SST and LST anomalies were merged to
produce a global analysis with error estimates.

The SST and LST reconstructions were each pro-
duced separately, and each was in turn the sum of two
analyses. For both SST and LST, first the low-frequen-
cy (LF) or decadal-scale component of the anomaly
was analyzed using averaging and filtering of the avail-
able anomalies. This nonparametric LF analysis was
done first because the climate-change part of the cli-
mate signal may not be stationary. Thus, it may be
poorly represented by stationary statistics used to ana-
lyze the remaining signal. The analyzed LF signal was
subtracted from the anomalies and the residual high-
frequency (HF) signal was analyzed. The HF analysis
was performed by fitting the observed HF anomalies to
a set of large-scale spatial-covariance modes. A set of
weights for the modes was computed to minimize the
mean-squared error of the fit. For both SST and LST,
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the reconstruction was the sum of the LF and HF analy-
ses.

To illustrate this, annual averages of the LF and
LF � HF analysis anomalies are shown for a location in
the tropical Pacific Ocean at 0°, 150°W (Fig. 1). In this
location there are large interannual variations indicated
by the LF � HF variations. The LF analysis gives the
background climate-change variations that the interan-
nual variations modulate. In this paper we discuss how
these LF and HF analyses are produced.

The global SST and LST interdecadal variations are
correlated (e.g., see SR05; Brohan et al. 2006). How-
ever, because oceans cover most of the earth’s surface,
roughly 70% oceans and 30% land, the SST analysis
remains the more important component of the global
analysis. To show the relative importance of SST to the
global interdecadal variations, consider the separate
SST and LST twentieth-century changes. From Tren-
berth et al. (2007), the 1901–2005 average trend in SST
is roughly 0.067°C decade�1, which is roughly the same
SST trend from Smith and Reynolds (2004) data. For
LST the Trenberth et al. (2007) trend is slightly larger
at between 0.068 and 0.084°C decade�1 for different
estimates. The corresponding variance of the SST trend
over this period is 0.04°C2, while for LST it is as much
as 0.06°C2 using the largest LST trend estimate. Be-
cause of its greater variance, the LST can affect the
interdecadal signal more than may be assumed based
only on the relative ocean-to-land area. However, when
the trend variances are weighted by the relative area
they represent, the SST-weighted variance is still 50%
larger than the LST-weighted variance.

This SST analysis used here is an improved version
of the Extended Reconstruction SST version 2
(ERSST.v2), developed by Smith and Reynolds (2004).
The new SST analysis is referred to as ERSST.v3. Note
that the ERSST.v3 analysis is monthly beginning in

1854, while the merged analysis begins in 1880. Im-
provements in methods used to compute ERSST.v3 are
described in section 2, with some additional details
given in the appendix.

The reconstructions of both SST and LST were de-
signed to analyze signals supported by the historical
sampling. Anomalies were damped toward a zero
anomaly when sampling was insufficient to analyze the
climate-scale signal. Here the 1971–2000 climate base
period is used to form anomalies, and thus both the LF
and HF analyses are damped toward this base when
sampling is not adequate. Deciding how much sampling
was sufficient was based on the data themselves and on
estimates of spatial and temporal scales of the LF and
HF components. In SR05 these decisions were conser-
vative to ensure that data noise would not contaminate
the analysis in sparse-sampling periods. A disadvantage
of such conservative decisions is that they can lead to
overly damped analyzed anomalies and large uncer-
tainty early in the historical record when sampling
tends to be most sparse.

Since the publication of SR05 several improvements
to the analysis were developed and tested. In Smith et
al. (2005) the global average was modified to exclude
data from regions with sparse sampling to minimize
damping of global-average anomalies. Other improve-
ments were also considered and tested. Here a set of
improvements and their effect on the reconstruction
are evaluated. Of the improvements, the two that have
the greatest influence on global averages are better tun-
ing of the reconstruction method and inclusion of bias-
adjusted satellite data since 1985. The following sec-
tions describe first the improvements one by one. Then
the impacts of these improvements on the analysis and
its uncertainty are discussed, including comparisons to
the SR05 analysis.

2. Improvements to the reconstruction

Most of the improvements are justified by testing
with simulated data. The simulated data are a combi-
nation of model output and observed data along with
the historical sampling grid. Testing is done using data
averaged to monthly 5° grid boxes, to simulate the his-
torical data. The model output used is from the Geo-
physical Fluid Dynamics Laboratory (GFDL) Climate
Model 2.1 (CM2.1), which was produced for Intergov-
ernmental Panel on Climate Change (IPCC) Fourth
Assessment Report (AR4; Solomon et al. 2007). This
coupled general circulation model (CGCM) simulates
the large-scale climate signal using variations in forcing
by greenhouse gases, aerosols, and the best available
estimates of solar radiation changes (Delworth et al.
2006). Surface and near-surface temperatures from an

FIG. 1. LF and LF�HF SST anomaly analyses at 0°, 150°W.
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ensemble of five runs are used. The model SST is used
over the oceans, and its near-surface temperature is
used to simulate station LST. This model simulates in-
terdecadal signals with characteristics similar to the ob-
servations where data are available. However, shorter-
period signals are not simulated as well by this climate
model. Therefore, output is filtered to extract the
model LF component. This is done using the 15-yr LF
filtering described by SR05. Briefly, the LF is computed
by first averaging anomalies spatially over 15° latitude–
longitude moving areas and then annually. The
smoothed annual averages are then median filtered us-
ing 15 annual averages to produce the LF anomaly
analysis. Because the model outputs are complete,
there is no damping of this test LF output. These model
LF anomalies are used for the 1860–2000 test period.

To make our study more realistic, HF variations from
observations are added. The HF observations are from
a combination of the optimum interpolation (OI) SST
over oceans and from the Global Historical Climate
Network (GHCN) over land, for the recent period
(Reynolds et al. 2002; Peterson and Vose 1997). To
form the merged complete data, the OI SST anomalies
are averaged to the monthly 5° grid boxes for 1982–
2001 and merged with the GHCN 5° monthly LST
anomalies. These data fill nearly all monthly 5° grid
squares within 1982–2001. The remaining unfilled grid
squares are filled using linear spatial interpolation of
the anomalies from their nearest neighbors. Linear
trends in these data are removed for the HF simulation.
The 20-yr record of HF variations is split into two 10-yr
periods. One 10-yr period is used to compute test re-
construction statistics, and the other independent pe-
riod is used to simulate HF variations. This split ensures
that the simulated data are independent of the statistics
used in the test reconstructions. The HF anomalies are
added to the model LF anomalies, repeated over the
length of the simulated data record, 1860–2000. Thus,
the same HF anomalies are repeated with a 10-yr cycle
over the 1860–2000 period.

To simulate random errors in the test data, the vari-
ance from the base period is scaled by random noise-
to-signal variance ratio estimates. Those random-error
variance estimates at each point are reduced by divid-
ing by the number of observations available for each 5°
monthly square. Historical sampling is obtained from
the International Comprehensive Ocean–Atmosphere
Data Set (ICOADS) for SST and from the GHCN for
LST. For SST, the noise-to-signal variance ratio esti-
mate for ships is used, as computed by Reynolds and
Smith (1994). For LST, the noise-to-signal variance ra-
tio for an individual station was estimated by assuming
a ratio of 1 for an individual observation. This is similar

to the ratio for satellite and buoy SSTs, and it may be an
overestimate for station data. For example, Brohan et
al. (2006) estimate that the standard error for individual
station observations is 0.2°C, and typically the signal
standard deviation is at least that magnitude. However,
because of the large number of monthly individual LST
observations that error component is greatly reduced
and this crude estimate is adequate for these tests.
Monthly LST values are obtained from twice-daily ob-
servations averaged over the month, so the monthly
LST test noise-to-signal variance ratio is 1:60 for each
station. As with SST, the LST random error variance is
reduced by the number of stations in each 5° square. In
each square, for each time, the random error estimate is
simulated by scaling the standard error by a random
number. These are produced using a random-number
generator that creates normally distributed numbers
with a zero mean and a standard deviation of one.

The simulated data are subsampled using the histori-
cal sampling grid and random errors are added to each
square with historical sampling. These data are used to
produce test temperature-anomaly reconstructions,
which are validated against the full simulated data with
no random errors. The global mean-squared error
(MSE) of the test analyses is used to evaluate the vari-
ous analysis tuning parameters, one by one.

a. Low-frequency (LF) tuning

The LF defines how much of the interdecadal climate
signal may be extracted from the data, given the his-
torical sampling. The LF is constructed by averaging
and filtering data over a spatial–temporal region, de-
fined as 10°–15° latitude–longitude areas spatially and
15 yr in SR05. There are several cutoffs in the LF analy-
sis to prevent averaging and filtering if there are too
few data. This ensures that data noise will be filtered
out of the signal. When data are too sparse the LF
analysis is set to a zero anomaly. Note that all analyses
are of anomalies relative to the 1971–2000 base. Here
the simulated anomalies are used to find settings that
minimize the global MSE relative to the fully sampled
anomalies.

The settings optimized (with a short name in paren-
theses) include the following:

1) The minimum number of months with data needed
to define an annual average (months per yr).

2) The minimum number of defined annual averages
needed to define a LF (min years per LF).

3) The size of the spatial averaging area for the LF
(area).

4) The maximum number of years used for median fil-
tering in the LF estimate (max years per LF).
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The SR05 LF settings are here referred to as the
default settings. The default settings are shown in Table
1, along with the optimized settings computed here.
Note that the simulated SST and LST LF anomalies
were constructed separately and then combined before
the global LF was optimized by testing a range of values
for each of the parameters.

For both months per year and min years per LF, the
optimized settings are much lower than the default set-
tings. This shows that the LF signal can be extracted
with much less sampling than had been assumed by the
default analysis. The analysis is also improved when the
averaging area is increased from 15° to 25°. The sensi-
tivity to max years per LF was initially evaluated for
SST by Smith and Reynolds (2003). They found that
using periods of 11–25 yr yields LF analyses with similar
variance, while using fewer years did not sufficiently
filter out data noise and using more years damps the LF
analysis. Here a similar result is obtained, with the
analysis optimized when 15 yr is used. These results
also show that the random errors do not overly con-
taminate the LF signal using these adjusted settings.

The influence of changing these parameters is shown
in the merged LF average between 60°S and 60°N using
the simulated data (Fig. 2). With full sampling, the in-
fluence of the 10-yr repeat cycle of the HF data is ap-
parent. After about 1930 there is little damping in ei-
ther of the test estimates. In the earlier period, most
damping occurs using the default parameter settings.
The damping is greatly reduced using the optimized
parameters. With the improved tuning there is little
damping after about 1875, but before that year there is
still damping due to sparse sampling. Since the histori-
cal merged analysis will begin in 1880, these new pa-
rameter settings eliminate most LF damping error in
the improved (version 3) analysis.

An example of the test LF estimates for 1890 is
shown using the default settings and the optimized set-
tings, compared to fully sampled LF analysis (Fig. 3).
Note that with the optimized settings much more of the
anomaly is analyzed without excessive contamination
by random noise. Using the default settings, damping is
excessive over much of the Pacific and over Africa,
where there are few observations for this year.

Because of how the LF analysis is computed damping
is due to sparse data and the effect of random errors is
filtered out of the analysis. To test this, the analysis
averages over only sampled regions were compared to
averages using the full data. The results show that the
two averages are almost indistinguishable. This is true
for both the LF analysis and the HF analysis, discussed
in section 2b.

b. High-frequency (HF) tuning

As mentioned above, the reconstruction consists of
first analyzing the LF anomalies, and then removing
that signal from the data and analyzing the residual HF
anomalies. The reconstructed anomaly is the sum of the
LF and HF anomalies. The HF component is analyzed
by fitting HF anomalies to a set of spatial modes. Tun-
ing is done to find the optimum sampling needed to use
a mode in the HF analysis. Each mode represents an
anomaly spatial covariance pattern, and sampling is ad-
equate when a critical percentage of the mode’s vari-
ance is sampled by the available observations (Smith
and Reynolds 2003). We test the critical sampling per-
centage by varying it between 10% and 35%. This
range of critical sampling shows the minimum MSE for
this parameter (Table 2). We evaluate as before to
minimize the global MSE averaged in time. These tests
show that between 20% and 25% sampling yields the
lowest MSE, similar to the SR05 default value of 25%.

TABLE 1. The LF analysis parameter default settings and
optimized settings (see text for definitions).

Default Optimized

1) Months per yr 5 2
2) Min yr per LF 5 2
3) Area 15° 25°
4) Max yr per LF 15 15

FIG. 2. The LF analysis using the fully sampled simulated data
(full), and the historically sampled data reconstructed using the
default SR05 parameter settings (default), and the optimized set-
tings (optimal). Analysis damping is greatly reduced using optimal
settings compared to the default settings.
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FIG. 3. (top) The LF full-grid data. Analyses using the historically sampled data, with the
(middle) default and (bottom) optimized parameter settings. This example year shows the
improved spatial resolution of the signal using optimal settings. Anomalies are in °C, with
values less than �0.6°C shaded dark and values greater than 0.6°C shaded light.
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Thus, most overall improvements in the historical re-
construction are from the LF analysis.

A potential deficiency in the SR05 analysis is its ten-
dency to underrepresent interannual variations when
sampling is sparse. That is because the HF analysis will
damp anomalies in regions where too few modes are
chosen for the analysis. For example, the Niño-3.4
(5°S–5°N, 120°–170°W) area SSTs may be slightly
damped early in the twentieth century, as discussed in
section 2c (V. Kousky 2006, personal communication;
see Fig. 8). To minimize this potential HF damping the
new analysis uses a 20% sampling cutoff for modes,
which is the lowest global value justified by these tests.
When we compute the MSE for the Niño-3.4 area only,
and for the nineteenth century, the MSE is also mini-
mized using 20% sampling.

c. Sampling cutoffs for large-scale averaging

The above results show that the reconstructions can
be improved in periods with sparse sampling. However,
there can still be damping errors in periods with sparse
sampling. Damping of large-scale averages may be re-
duced by eliminating poorly sampled regions because
anomalies in those regions may be greatly damped. In
Smith et al. (2005) error estimates were used to show
that most Arctic and Antarctic anomalies are unreliable
and those regions were removed from the global-
average computation. Here testing using the simulated
data is done to find objectively when regions should be
eliminated from the global average to minimize the
MSE of the average compared to the full data.

To define spatial sampling for each reconstructed 5°
latitude–longitude area, the surrounding 25° latitude–
longitude region is examined. This larger area is used
because both the LF and the HF analyses use surround-
ing data to analyze the central area. The percentage of
the 25° area that is sampled by the historical sampling
grid is computed for each month. If the percentage falls

below a given value, then the central 5° anomaly is
excluded from the average. Tuning defines the critical
sampling value.

Using the default SR05 parameters, the merged glob-
al MSE is minimized when the 25° region has at least
35% sampling. Using the improved tuning discussed
above, the MSE is minimized when there is at least 20%
sampling. The improved parameters yield a lower op-
timal sampling for global averages because they pro-
duce a less-damped analysis in the presence of sparse
sampling. However, even with the improved param-
eters the MSE for global averages can be reduced by
omitting some sparsely sampled regions. When these
tests are repeated using sampling regions larger than
25°, the minimum MSE is still found using a 20% sam-
pling cutoff. However, for larger sampling regions that
minimum MSE is larger than for 25° sampling regions.

Because of the larger relative ocean area, the SSTs
are most strongly affected by the tuning improvements
discussed in sections 2a–c. Next we specifically focus on
changes in the SST analysis in sections 2d–e, and on
changes in the LST analysis in section 2f.

d. Bias-adjusted satellite SSTs

Since 1985 the Advanced Very High Resolution Ra-
diometer (AVHRR) Pathfinder day and night satellite
SST observations are available (Kilpatrick et al. 2001).
These data improve SST sampling, especially in the
Southern Ocean, and they are incorporated into the
improved ERSST.v3 analysis. However, before they
may be used, the satellite SSTs require bias adjust-
ments, as discussed by Reynolds and Smith (1994).

The satellite data biases are usually associated with
aerosols and clouds, both of which cause a cool bias.
For example, both day and night satellite observations
show strong tropical biases associated with the Mount
Pinatubo eruption in 1991. Compared to the opera-
tional AVHRR SSTs used by Reynolds et al. (2002),
initial Pathfinder bias variability is lower because of the
more careful processing of this delayed-time product.

The satellite SSTs are bias adjusted relative to the
merged ship and buoy SSTs. Adjustments are produced
using analyses similar to the HF SST analyses. Separate
analyses of the in situ and satellite SSTs are produced
using only spatial modes adequately sampled by both
data types. The difference between the analyses defines
the satellite bias. Using only modes sampled by both
data types removes the sampling bias from the separate
analyses, and ensures that their differences are caused
by data biases.

Separate adjustments are performed for day and
night satellite SSTs. After adjustment, all data types are

TABLE 2. Global- and time-average MSE for the HF tests, in
°C2. The critical sampling (Crit) is evaluated using the global MSE
averaged for 1861–99 (nineteenth century) and for 1861–2000 (full
period).

MSE

Nineteenth
century Full Crit (%)

0.668 0.431 10
0.615 0.409 15
0.603 0.400 20
0.608 0.399 25
0.635 0.406 30
0.653 0.412 35
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merged to form the adjusted merged data used in the
statistical analysis. In merging the SSTs the relative
weights for ships, buoys, day satellites, and night satel-
lites are given in Table 3. These weights are based on
the relative noise of the different data types, as esti-
mated by Reynolds and Smith (1994). All available
data types are used to form the merged data. The
weighted sum of the available data types is computed
using these weights normalized by the sum of the
weights. That normalization ensures that there is no
damping or inflation of the merged SST.

Since most of the oceans are adequately sampled by
in situ data, the influence of satellite data is greatest in
the Southern Ocean. South of about 45°S, the satellite
data cause a slight cooling of the SSTs, which results in
a slight reduction in the near-global (in situ � sats)
average compared to the in situ analysis (Fig. 4). The
difference in the average caused by including satellite
data is only about 10% of the anomaly for the most
recent years.

Because the Southern Ocean is sparsely sampled by
in situ data, and most in situ data in that region are
buoy SSTs, we performed some more detailed testing
of the influence of satellite data in that region. A test
region was chosen where the in situ analysis sometimes
differs greatly from the combined satellite and in situ
analysis (55°–45°S, 160°–170°W). Averages of both
analyses in this region showed that they are usually

similar, but in periods when in situ sampling is sparse
they can have large differences. This difference occurs
because when in situ sampling is sparse, the dominant
analysis mode for the region is not sampled by the in
situ data while satellite data always sampled the mode.
When its sampling is too sparse to resolve that mode,
the in situ–only analysis anomaly is damped toward a
zero anomaly while the satellite anomaly is not damped.
Differences are largest and somewhat erratic when few
2° squares within the test region are sampled, although
even with in situ sampling available the satellite data
tend to always cool the analysis slightly (Fig. 5). For low
numbers of in situ data some of the difference may be
due to in situ noise.

Some satellite bias adjustment may be computed
when the local in situ sampling is sparse even if the
dominant mode is missing. A residual adjustment may
occur due to the influence of other modes. Thus, some
bias adjustment may still be computed for the region
based on more remote in situ and satellite data. How-
ever, these remotely based adjustments are weaker
than more locally based adjustments. This increases the
uncertainty in the analysis when local in situ data are
not available, although satellite data should still im-
prove the Southern Ocean analysis by resolving anoma-
lies that would otherwise be greatly damped. However,
as Fig. 5 indicates, the local bias uncertainty in those
cases may be as large as 0.5°C.

In addition to biases in satellite data, there are other
data biases. The most important additional data bias
may be the ship–buoy bias (Kent and Taylor 2006;

FIG. 4. Annual reconstructed SST anomaly averaged between
60°S and 60°N for analyses with and without bias-adjusted satel-
lite data. Satellite data are bias adjusted relative to the in situ data
in regions where both are available.

TABLE 3. Relative weights of different types of SST data used in
analysis.

Ship Buoy Day satellite Night satellite

1 7 6 19

FIG. 5. Analyzed differences (in situ minus the in situ and sat-
ellite analysis) as a function of the number of in situ observations.
The maximum possible number of in situ observations in the re-
gion is 25. The monthly differences are from the indicated test
region and are averaged over 1985–2005.
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Rayner et al. 2006). This relative bias is important be-
cause of the growing number of buoy SSTs since the
mid-1980s (e.g., Reynolds et al. 2002). Before 1985
most in situ SSTs are ship measurements. Where both
ship and buoy observations are available, the ships are
typically about 0.1°C warmer. However, the bias is not
constant in either space or time where both data types
are available. In addition, before the mid-1980s there
are few buoy observations so directly analyzing the bias
from data over the full reconstruction period is not pos-
sible.

Because ships tend to be biased warm relative to
buoys and because of the increase in the number of
buoys and the decrease in the number of ships, the
merged in situ data without bias adjustment can have a
cool bias relative to data with no ship–buoy bias. As
buoys become more important to the in situ record, that
bias can increase. Since the 1980s the SST in most areas
has been warming. The increasing negative bias due to
the increase in buoys tends to reduce this recent warm-
ing. This change in observations makes the in situ tem-
peratures up to about 0.1°C cooler than they would be
without bias. At present, methods for removing the
ship–buoy bias are being developed and tested.

Besides ship–buoy biases, there are also biases in the
expendable bathythermograph (XBT) temperatures
(Gouretski and Koltermann 2007). The XBTs are in-
cluded in the ICOADS observations, so their biases
affect the analysis from the 1950s to 1984 when
ICOADS data are used. The XBTs constitute the major
part of subsurface sampling, and correcting their biases
reduces the warm subsurface upper-ocean temperature
anomaly by about a third. However, the XBTs account
for less than 5% of the ICOADS SST sampling when
they are available. Thus, their biases should have a mi-
nor influence on the pre-1985 analysis and we do not
adjust for them in this analysis. The much larger prob-
lem is the ship–buoy biases beginning 1985.

e. Sea ice impact on the SST analysis

In SR05 sea ice concentration of 0.6 (60%) and
above, are used to linearly damp the analyzed SSTs
toward the freezing temperature of seawater, �1.8°C,
for concentrations between 0.6 and 0.9. Concentrations
below 0.6 have no effect on the SST, and above 0.9 the
SST is set to the freezing temperature. Variations in the
historical sea ice coverage have little effect on global-
average temperatures, but they can be important lo-
cally. Historical estimates of ice concentration are
based on observations from ships and aircraft, and they
are most suitable for seasonal and decadal variations in
sea ice concentrations. Here SST–ice adjustments are

applied as in SR05. Differences from SR05 are from
improved bias adjustments applied to satellite-based
sea ice concentrations.

Beginning in the late 1970s, satellites have been used
to estimate sea ice concentrations. However, satellite
sea ice concentrations cannot separate summer melt
ponds on the sea ice surface from the open ocean. This
results in an ice concentration bias in warm seasons.
Rayner et al. (2003) provided a method to correct these
biases based on the 1979–99 data. The corrections were
computed using the same method used for the sea ice
concentrations in Reynolds et al. (2002) and extended
through the present. These adjusted sea ice concentra-
tions were used in SR05. The impacts of these adjust-
ments in SR05 were relatively small because only ice
concentrations �0.6 were used in SR05. In addition, the
final monthly product of Reynolds et al. (2002) could
be delayed up to 10 days after the first of the month. To
eliminate this time delay in updates of the new analysis,
new corrections were produced using satellite sea ice
concentrations from Cavalieri et al. (1999) and the
Reynolds et al. (2002) concentrations. The adjustment
is a function of the satellite concentration, computed
seasonally for each hemisphere for 2000–04. Each con-
centration is adjusted with a constant computed to
minimize the error of the adjusted value. There is no
adjustment for satellite concentrations less than 40% or
equal to 100%. For in-between concentrations the ad-
justment removes most bias caused by ice ponds. Dif-
ferences in SST caused by the adjustments are almost
always less than 0.1°C, and typically much less. Differ-
ences are only important locally and they have almost
no effect on hemispheric or larger-scale spatial aver-
ages. The adjustment was tested and found to be stable
after 1995. Updates of ERSST.v3 will use this new bias-
adjusted sea ice beginning in 2000. The sea ice concen-
tration adjustment to SSTs is otherwise the same as in
SR05.

The effect of ERSST.v3 sea ice adjustments on glob-
al-average SSTs is only about 0.01°C. However, ice ad-
justments can cool SSTs by 0.2°C or more locally in the
marginal-ice zones. As noted above, the SST–ice ad-
justment is only applied for a sea ice concentra-
tion �0.6. In the large-scale averages of merged LST
and SST anomalies discussed in section 2f, SSTs with
ice concentrations �0.5 are treated as missing regions
that do not contribute to the average. Thus, sea ice
adjustments do not influence the large-scale averages
of merged temperature anomalies discussed in section
2f, although the masking out of those regions increases
the sampling-error estimates of those large-scale aver-
ages.
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f. Reinjecting in situ land data

In 5° squares with GHCN sampling the LST is much
more reliable than in regions filled by interpolation.
The interpolation filters and smoothes the LST in all
regions, including regions with sampling where the un-
filtered GHCN should be more accurate. To minimize
differences between the GHCN and the analysis where
sampling is available, the GHCN anomalies are rein-
jected into the analysis after the statistical interpola-
tion. In 5° squares with no GHCN sampling, no adjust-
ment is done.

The number of GHCN stations in 5° latitude–
longitude regions is used to determine how strongly the
LST reinjection should be. With only one station in a 5°
square the GHCN is less reliable and the statistical
analysis is more heavily dependent on in that situation.
With more stations in the square, the GHCN is more
reliable. The relative weight of the GHCN anomaly as
a function of the number of stations in a 5° square, n, is
computed by

WG � 1 � e�n�3.

The statistical reconstruction is assigned the weight 1 �
WG. Thus, with n � 2 stations the GHCN and statistical
reconstruction are about equally weighted, and with
more stations the GHCN dominates. This adjustment
increases the LST spatial variations, but it has almost
no effect on hemispheric and larger-scale spatial averages.

3. Improved analysis

Here the new merged reconstruction (merged.v3) is
discussed and compared to other analyses. Compared
to Quayle et al. (1999) and the SR05 analysis, there is
little difference in the global average temperatures for
most of the analysis period (Table 4). Another analysis
used for comparisons is the merged analysis produced
jointly by the Met Office Hadley Centre and the Uni-
versity of East Anglia’s Climatic Research Unit [the
Hadley Centre Climatic Research Unit Temperature
dataset version 3 (HadCRUT3v); Brohan et al. (2006)].

Those comparisons show slightly larger differences
with HadCRUT3v giving slightly larger interdecadal
changes. For the other comparisons in Table 4, the
greatest differences from the merged.v3 are early in the
analysis period when the merged.v3 produces stronger
anomalies due to better tuning.

Compared to the SR05 error estimates, the merged.v3
analysis has lower error (Table 5). In addition, the total
global error estimates of Brohan et al. (2006) are simi-
lar to the merged.v3 total global error estimates.
Merged.v3 error estimates account for sampling and
bias errors. Bias errors include uncertainty in historical
SST bias adjustments, uncertainty from land shelter
types, and from land-use changes at the station loca-
tions such as urbanization. Error estimation methods
are described in detail in SR05. The only difference in
the current study is that for recent years the urbaniza-
tion uncertainty is assigned a maximum equal to its
value for the year 2000 while in SR05 the urbanization
uncertainty continues to grow linearly with time. As
with other error components, the urbanization uncer-
tainty widens the error estimates on both sides of the
expected value. Given that recent research by Parker
(2004, 2006) and Peterson and Owen (2005), indicates
that “the effects of urbanization and land use change on
land-based temperature record are negligible” (Tren-
berth et al. 2007), the urbanization error used in this
analysis is likely overestimated.

In SR05 the low-frequency sampling dominates the
global-average error, while in the improved analysis
that error component is much smaller because of the
improved tuning and the bias error now dominates. For
all years, the SR05 analysis is within the 95% confi-
dence levels of the merged.v3 analysis. In an indepen-
dent study Brohan et al. (2006) similarly separated and
evaluated errors. They also found that the most impor-
tant components to the global-average error are sam-
pling error from limited spatial coverage and bias un-
certainty, and computed total error estimates similar to
those computed here. However, here the bias error is
the largest component while in Brohan et al. (2006)
error from the limited spatial coverage is larger. This
is in part because Brohan et al. (2006) do not interpo-
late to fill all locations, so their sampling error for the

TABLE 4. Global- and time-average of merged temperature
anomalies. All time series are recentered so that the 1971–2000
average is zero. Shown are time averages for the improved recon-
struction (merged.v3), SR05, Quayle et al. (1999), and
HadCRUT3v. All values are in °C.

1880–1900 1901–50 1951–2000 2002–04

Merged.v3 �0.38 �0.32 �0.07 0.34
SR05 �0.36 �0.31 �0.08 0.35
Quayle et al. (1999) �0.37 �0.31 �0.07 0.35
HadCRUT3v �0.43 �0.36 �0.08 0.37

TABLE 5. Global-annual standard error averaged for the given
periods. Shown is the merged land–sea temperature standard er-
rors, for the improved reconstruction (merged.v3) and SR05. All
values are in °C.

1880–1900 1901–50 1951–2000

Merged.v3 0.09 0.07 0.03
SR05 0.13 0.11 0.06
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global average is larger. The difference is also in part
because the SST bias uncertainty estimates used here
are slightly larger than those used by Brohan et al.
(2006).

Comparison of the merged.v3 global and annual-
average temperature anomalies to SR05 (merged.v2)
and Brohan et al. (2006; HadCRUT3v) anomalies (Fig.
6) shows that all have similar global variations through-
out the analysis period. Differences are less than the
95% confidence limits of the merged.v3 analysis. As
noted above, the overall errors for merged.v3 and Bro-
han et al. (2006) are also similar for most of the analysis
period. For the recent period, since 1950, the merged.v3
errors are slightly smaller than the Brohan et al. (2006)
estimates. Note that the confidence limits are wide
early in the twentieth century due to insufficient sam-
pling and bias uncertainty. They decrease greatly be-
tween 1930 and 1950 due to increased sampling, and
they increase slightly after 1950 due to increasing ur-
banization bias uncertainty. As discussed above, we
may overestimate the recent urbanization bias uncer-
tainty in this analysis.

Differences are most noticeable before 1930, when
anomaly damping causes SR05 to have a slightly
weaker anomaly while HadCRUT3v has a slightly
stronger anomaly in that period. The addition of satel-
lite data also causes a slight cooling of the merged.v3
analysis after about 2000. That is due to the cooler
satellite Southern Ocean SSTs, a region poorly sampled
by ship data although there are Southern Ocean buoys.

Note that if the ship–buoy bias were also adjusted with
respect to the ships, then the most recent years would
be warmer, because the ship–buoy difference tends to
be positive and because of the increasing number of
buoy observations. However, as discussed above, these
differences are well within the 95% confidence limits.

Although the correlations are high between SR05
and merged.v3, the additional bias-adjusted data for the
recent years affect the rankings. The rankings of the
warmest 10 yr are similar for both, with 2005 the warm-
est for both followed by 1998, a year with a strong warm
ENSO episode (Table 6). The few changes in rankings
occur where there is little difference between the years,
when slight changes in the analyses and the input data
can cause a shift. Note that the error estimates for the
recent period (Table 5) indicate that there is no signif-
icant difference between the warmest years shown in
Table 6. In preliminary testing of ship–buoy bias ad-
justments, the most recent 5 yr are warmed slightly
when that bias adjustment is applied. The adjustments
would also change the rankings slightly. The fact that
the 10 warmest years occur in the last 12 yr of this
127-yr record is more significant than the precise order
of the rankings.

The improved analysis shows similar variations when
compared to other analyses, as expected. Correlations
between merged.v3 and HadCRUT3v are used to show
their similar variations over most regions (Fig. 7). All
month anomaly correlations of the 5° monthly data are
computed. The figure shows correlations for the full
1880–2006 period. Correlations are computed only for
regions that have at least 30 pairs of merged.v3 and
HadCRUT3v data, which omits some 5° squares be-
cause HadCRUT3v does not use interpolation to fill all
regions. For the full 1880–2006 period, correlations are
highest between 45°S and 70°N, with an average value
of 0.74. In addition, correlations are computed using
data from 1900 to 1949 and from 1950 to 1999 (not

FIG. 6. Global and annual merged temperature anomalies from
SR05 (merged.v2), the improved analysis (merged.v3), and from
HadCRUT3v. The base periods are adjusted to match the 1971–
2000 base used in the improved analysis. A 1–2–1 smoother has
been applied to each time series of annual averages. The 95%
confidence limits reflecting all errors estimated for merged.v3 are
drawn for the years 1900, 1930, 1960, and 1990.

TABLE 6. Rankings of the 10 warmest global and annual aver-
ages from 1880 to 2006 for SR05 (merged.v2) and the improved
analysis (merged.v3).

Rank Merged.v2 Merged.v3

1 2005 0.41 2005 0.40
2 1998 0.38 1998 0.37
3 2002 0.36 2003 0.36
4 2003 0.36 2002 0.35
5 2006 0.35 2006 0.33
6 2004 0.34 2004 0.32
7 2001 0.30 2001 0.29
8 1997 0.27 1997 0.25
9 1999 0.20 1995 0.18

10 1995 0.19 1999 0.17
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shown). For 1900–49 the average correlation for this
region is 0.68, while for 1950–99 it is 0.77. This differ-
ence suggests that the better sampling in the second
half of the twentieth century improves the comparisons.
Outside of this region sampling is sparser and correla-
tions are lower.

Similar comments may be made of comparison
of ERSST.v3 to the Hadley Centre Sea Ice and SST
analysis (HadISST; Rayner et al. 2003). One region of
particular interest is the Niño-3.4 area (5°S–5°N,
120°–170W°). The all-month anomaly correlation of
HadISST with ERSST.v3 in this region for 1880–1997 is
0.90. Both analyses are clearly producing consistent in-
terannual variations. But there are important differ-
ences in this region in periods when sampling is sparse.
In Niño-3.4 prior to 1950, HadISST is biased about
0.3°C warmer than ERSST.v3. Much of the bias is due
to the use of different historical bias adjustments in the
two analyses prior to 1942. Another important differ-
ence depends on the method used to compute low-
frequency variations. In HadISST they are computed
by fitting data to a global mode, while here simpler
averaging and filtering is used, as discussed above.

Changes in the Niño-3.4 SST anomalies between
ERSST.v2 and ERSST.v3 are very small after 1950.
Earlier in the record the two are also highly correlated,
but there are times when the ERSST.v2 anomaly is
greatly damped from a lack of sampling (Fig. 8). These
times include years before 1880 and around 1918,
shown more clearly in the difference (Fig. 8, bottom
panel). The improved tuning used for ERSST.v3 allows
these variations to be more reliably resolved. Because
the merged.v3 analysis begins in 1880, SST damping
from before that year does not affect the merged analy-
sis. However, as the figure shows there are other times
in the record when sparse sampling could have pro-
duced damping in the old (merged.v2) analysis.

4. Summary

Simulated data from models and observations are
used to improve the tuning of the National Oceanic and
Atmospheric Administration (NOAA) operational sur-
face temperature analysis. Errors from excessive damp-
ing are reduced in the improved analysis (merged.v3).
This is especially important in the ocean component of
the analysis (ERSST.v3). Compared to SR05, the great-
est improvements occur in the nineteenth century.
However, there are some sparsely sampled regions in
all periods that are improved by the new tuning. In
addition, global averaging of the analysis is optimally
tuned to exclude undersampled regions responsible for
excessive damping of global averages.

In addition to improvements from better tuning,
other improvements are also incorporated. Bias-
adjusted AVHRR satellite SSTs are added, which gives
better resolution in the Southern Ocean. Because the
satellite data are filtered by the analysis modes, includ-
ing satellite data does not cause a large jump in the
analyzed variance and has little effect outside the
Southern Ocean. Improved sea ice analyses are avail-

FIG. 7. Anomaly all month temperature correlation of
merged.v3 and HadCRUT3v on the 5° grid for 1880–2006.

FIG. 8. Niño-3.4 SST anomalies from (top) ERSST.v2 and
ERSST.v3, 1876–1944. (bottom) The ERSST.v3 � ERSST.v2 dif-
ference. Monthly values of each are smoothed using a 3-month
running mean. Note ERSST.v2 damping is before 1880 and near
1918.
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able with near-real-time updates. These satellite-based
ice analyses are bias adjusted to reduce the effect of
melt ponds and incorporated to improve the high-
latitude SST analysis.

Large-scale averages of the improved merged.v3 are
similar to earlier analyses, although the improvements
reduce damping errors and uncertainty estimates early
in the record. This allows the climate-change signal to
be measured more accurately. Regions with sparse
sampling have the greatest analysis uncertainty, espe-
cially the Arctic and Antarctic regions where sampling
is always sparse. However, even with these limitations
the data are sufficient to indicate global twentieth-
century warming of roughly 0.7° �0.2°C.

Although this analysis contains a number of improve-
ments, more improvements are possible. Satellite
analyses for land temperatures are beginning to be de-
veloped (e.g., see Jin 2004 and references therein).
There are problems associated with LST analyses from
satellite data due to contamination from snow and ice,
but if these problems can be overcome the satellite data
could contribute to improved recent-period LST analy-
sis. A future LST historical reconstruction could thus
be improved using land satellite temperature to im-
prove reconstruction statistics over land and also to
help fill sampling gaps in the recent period.

Several refinements to the error estimates are also
possible. Uncertainty in the satellite bias adjustments
could be incorporated in the error estimate. For the
land temperatures it is assumed that urbanization
causes an increasing bias error through the second half
of the twentieth century, as in Folland et al. (2001).
However, more recent studies indicate that urbaniza-
tion-error estimate may be too large. For example, the
IPCC’s assessment of many recent studies indicates that
the impact of urbanization is “negligible” (Trenberth et
al. 2007). In addition, the studies of Peterson et al.
(1999) and Peterson (2003) suggest that the urbaniza-
tion error is much less than is assumed here. Additional
refinements are unlikely to change the basic character
of the large-scale variations, but they could improve the
analysis locally and further reduce its uncertainty.
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APPENDIX

Improved Extended Reconstructed SST (ERSST.v3)

A major component of the improved merged land
and ocean temperature analysis is the improved Ex-
tended Reconstructed SST version 3 (ERSST.v3). Im-
provements in analysis methods between ERSST.v2
and ERSST.v3 are discussed in section 2 and the impact
of those improvements is discussed in section 3. The
major differences between ERSST.v2 and ERSST.v3
are summarized here. This is intended to better de-
scribe ERSST.v3 for readers especially interested in the
SST component of the analysis.

The period of record for both ERSST.v2 and
ERSST.v3 is the same, monthly beginning 1854. Both
historical analyses are based on ICOADS SST anoma-
lies and both use the same historical bias adjustment
(Smith and Reynolds 2002). For the historical analyses,
roughly before 1980 when only in situ data are avail-
able, the major differences are caused by the improved
tuning of ERSST.v3. As discussed in section 2a, the
biggest change occurs due to the improved tuning are in
the low-frequency (LF) analysis. However, as discussed
in section 2b and in section 3, resolution of interannual
variance is also improved by the high-frequency (HF)
tuning. Changes in the sea ice to SST analysis produce
only minor differences.

The ERSST.v3 is improved by explicitly including
bias-adjusted satellite infrared SST estimates. In
ERSST.v2 and ERSST.v3, information from satellites is
indirectly included because the HF analyses are based
on modes computed from the Reynolds et al. (2002)
analysis, which includes the satellite data. In ERSST.v3
the Pathfinder infrared SST estimates are introduced in
the analysis by combining those SST data with ship and
buoy data. Satellite SSTs are bias adjusted relative to
the ship and buoy data as previously discussed. The
SST estimates from satellite, ships, and buoys are
merged using a weighted sum of the different inputs,
with weights inversely proportional to the noise esti-
mate for each type (see section 2d). The merged SSTs
are used in the ERSST.v3 analysis. In ERSST.v2 only in
situ SSTs are used. The greatest influence of the satel-
lite data is to produce greater variability south of 45°S
beginning in 1985. In most other regions the influence
of satellite data is small because of generally sufficient
in situ monthly sampling in the recent period.

Overall improvements in ERSST.v3 variance can be
seen by comparing the global spatial standard devia-
tions of ERSST.v3, ERSST.v2, and OI.v2 since 1985
(Fig. A1, top panel). All three reflect the same inter-
annual variations. The OI.v2 variations are strongest
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because that analysis does not filter satellite data
through spatial modes, as the reconstructions do. How-
ever, even with the mode filtering, ERSST.v3 resolves
more variance than ERSST.v2, mostly because of the
better resolution of Southern Ocean variations. Rela-
tive to ERSST.v3, the bias of OI.v2 is lower than
ERSST.v2 (Fig. A1, bottom panel). That is because
both ERSST.v3 and OI.v2 incorporate bias-adjusted
satellite data.
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