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[1] Recent developments in observational near-surface air temperature and sea-surface
temperature analyses are combined to produce HadCRUT4, a new data set of global and
regional temperature evolution from 1850 to the present. This includes the addition of
newly digitized measurement data, both over land and sea, new sea-surface temperature
bias adjustments and a more comprehensive error model for describing uncertainties in
sea-surface temperature measurements. An ensemble approach has been adopted to
better describe complex temporal and spatial interdependencies of measurement and bias
uncertainties and to allow these correlated uncertainties to be taken into account in
studies that are based upon HadCRUT4. Climate diagnostics computed from the gridded
data set broadly agree with those of other global near-surface temperature analyses.
Fitted linear trends in temperature anomalies are approximately 0.07�C/decade from
1901 to 2010 and 0.17�C/decade from 1979 to 2010 globally. Northern/southern
hemispheric trends are 0.08/0.07�C/decade over 1901 to 2010 and 0.24/0.10�C/decade
over 1979 to 2010. Linear trends in other prominent near-surface temperature analyses
agree well with the range of trends computed from the HadCRUT4 ensemble members.
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1. Introduction

[2] This paper reports on the development of HadCRUT4,
the most recent update to the HadCRUT series of observa-
tional surface temperature data sets [Jones, 1994; Jones and
Moberg, 2003; Brohan et al., 2006]. This new version of the
HadCRUT data set has been developed to incorporate
updates to the land air temperature [Brohan et al., 2006]
and sea-surface temperature (SST) [Rayner et al., 2006]
anomaly data sets that formed the land and sea portions of
HadCRUT3 [Brohan et al., 2006]. The land record has now
been updated to include many additional station records and
re-homogenized station data. This new land air temperature
data set is known as CRUTEM4 [Jones et al., 2012]. A major
update to the sea-surface temperature (SST) component of
the global record has also been completed. This is known as
HadSST3 [Kennedy et al., 2011a, 2011b]. In addition to the
inclusion of additional measurements, HadSST3 includes a
more thorough assessment of SST uncertainty, incorporating
a more comprehensive uncertainty model, new bias adjust-
ments and analysis of bias adjustment uncertainty.

[3] The surface temperature analyses used to monitor
climate are largely based on a similar set of temperature
measurements, augmented by additional data where avail-
able. Land station records are mostly obtained from national
meteorological services through World Meteorological
Organization (WMO) and Global Climate Observation
System (GCOS) initiatives. These station data are typically
updated through monthly CLIMAT message transmissions
(coordinated by the WMO), Monthly Climatic Data for the
World (MCDW) publications, and decadally produced
World Weather Records (see Jones et al. [2012] for details).
Current data sets of historical SSTs are largely based on the
International Comprehensive Ocean-Atmosphere Data Set
(ICOADS) [Woodruff et al., 2011], a compilation of meteo-
rological data collected by ships and drifting and tethered
buoys. Operationally, these data sets are updated using data
received over the Global Telecommunication System (GTS).
Additionally, some global surface temperature analyses
incorporate SST retrieved from satellite measurements.
Despite the data being largely drawn from the same sources,
there are small but appreciable differences between promi-
nent near-surface temperature data sets and their derived
global and regional temperature records [Kennedy et al.,
2010].
[4] Differences between these data sets, and derived

analyses of global and regional temperature, may result
from: the inclusion of additional observational data to
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supplement the sources mentioned above; differences in data
quality control methods; applied measurement bias adjust-
ments and data set gridding methodologies. The land and sea
components of HadCRUT4 are formed by gridding tem-
perature anomalies calculated from observations made in
each box of a regular latitude/longitude grid, without using
interpolation. HadCRUT4 remains the only one of the four
prominent combined land and SST data sets that does not
employ any form of spatial infilling and, as a result, grid box
anomalies can readily be traced back to observational
records. The global near-surface temperature anomaly data
set of the Goddard Institute for Space Studies (GISS)
[Hansen et al., 2010], is again a blend of land and SST data
sets. The land component is presented as a gridded data set
in which grid box values are a weighted average of tem-
perature anomalies for stations lying within 1200 km of grid
box centers. The sea component is formed from a combi-
nation of the HadISST1 data set [Rayner et al., 2003] with
the combined in situ and satellite SST data set of Reynolds
et al. [2002]. The National Climatic Data Center (NCDC)
analysis is a blend of land data from the Global Historical
Climate Network (GHCN) with the ERSST3b [Smith et al.,
2008] interpolated sea-surface temperature data set, with
land data in unobserved regions reconstructed using a
method known as empirical orthogonal teleconnections
[Smith et al., 2008; Menne and Williams, 2009; Lawrimore
et al., 2011]. The analysis of the Japanese Meteorological
Agency (JMA) (K. Ishihara et al., Long-term change of
global average surface temperature with the JMA Com-
bined Land and Ocean Temperature Data Set (JMATMP1),
submitted to Journal of the Meteorological Society of Japan,
2012) is a blend of temperatures over land principally
derived from GHCN and CLIMAT reports with the opti-
mally interpolated COBE SST data set [Ishii et al., 2005]. In
addition to the differences arising from data set construction
methodologies, differences in computed climate diagnostics,
such as regional average temperatures, can result from dif-
fering approaches to compensating for non-uniform obser-
vational coverage across the globe.
[5] The differences in temperature analyses resulting from

the various approaches is referred to as “structural uncer-
tainty”: the uncertainty in temperature analysis arising from
the choice of methodology [Thorne et al., 2005]. It is
because of this structural uncertainty that there is a require-
ment for multiple analyses of surface temperatures to be
maintained so that the sensitivity of results to data set con-
struction methodologies can be assessed. The requirement
for any given analysis is to strive to both reduce uncertainty
and to more completely describe possible uncertainty sour-
ces, propagating these uncertainties through the analysis
methodology to characterize the resulting analysis uncer-
tainty as fully as possible.
[6] So, how certain can we be of the temperature evolution

observed in a given observational analysis? A detailed
measurement error and bias model was constructed for
HadCRUT3 [Brohan et al., 2006]. This included descrip-
tions of: land station homogenization uncertainty; bias
related uncertainties arising from urbanization, sensor
exposure and SST measurement methods; sampling errors
arising from incomplete measurement sampling within grid–
boxes; and uncertainties arising from limited global cover-
age. The uncertainty model of Brohan et al. [2006] allowed

conservative bounds on monthly and annual temperature
averages to be formed. However, it did not provide the
means to easily place bounds on uncertainty in statistics that
are sensitive to low frequency uncertainties, such as those
arising from step changes in land station records or changes
in the makeup of the SST observation network. This limi-
tation arose because the uncertainty model did not describe
biases that persist over finite periods of time, nor complex
spatial patterns of interdependent errors.
[7] To allow sensitivity analyses of the effect of possible

pervasive low frequency biases in the observational near-
surface temperature record, the method used to present these
uncertainties has been revised. HadCRUT4 is presented as
an ensemble data set in which the 100 constituent ensemble
members sample the distribution of likely surface tempera-
ture anomalies given our current understanding of these
uncertainties. This approach follows the use of the ensemble
method to represent observational uncertainty in the
HadSST3 [Kennedy et al., 2011a, 2011b] ensemble data set.
There has been similar use of ensembles in other studies,
e.g., in that of Rayner et al. [2006] to quantify uncertainties
in SST biases, and in that of Mears et al. [2011] in the study
of uncertainties in Microwave Sounding Unit (MSU) based
measures of temperature in the upper atmosphere. For
HadCRUT4, the individual ensemble members will be made
available to allow the sensitivity to slowly varying obser-
vational error components to be taken into account in studies
based on the data set. It should be noted that the HadCRUT4
uncertainty model only takes into account uncertainties
identified in the construction of HadCRUT4, and other
as yet unidentified sources of uncertainty may exist. This
model cannot take into account structural uncertainties aris-
ing from data set construction methodologies. It is clear that
a full description of uncertainties in near-surface tempera-
tures, including those uncertainties arising from differing
methodologies, requires that independent studies of near-
surface temperatures should be maintained. We recommend
that, in addition to the use of HadCRUT4, data set users
consider testing the robustness of their results by comparison
to other available data sets.
[8] This paper is structured as follows. Section 2 provides

an overview of the updated land station record CRUTEM4
[Jones et al., 2012] and SST data set HadSST3 [Kennedy
et al., 2011a, 2011b] from which the global analysis
HadCRUT4 is formed. Section 3 describes the production
of an ensemble of CRUTEM4 realizations from the Brohan
et al. [2006] uncertainty model and briefly describes the
construction of the HadSST3 ensemble data set. Section 4
describes the method for combining land and marine com-
ponents to form the HadCRUT4 data set. Section 5 describes
the methods used to generate time series and their related
uncertainties from the gridded HadCRUT4 data. The
improvements in global coverage achieved through the
inclusion of additional data in HadCRUT4 are discussed in
section 6. In section 7, global and regional time series
computed from HadCRUT4 are presented and compared to
other analyses of near-surface temperature. Section 8 con-
cludes and describes areas in which we believe further study
is required.
[9] The data set described in this paper, HadCRUT4, and

derived time series can be obtained from http://www.
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metoffice.gov.uk/hadobs/ and http://www.cru.uea.ac.uk/cru/
data/temperature/.

2. Updates to Land and Sea Components

[10] Both the CRUTEM4 [Jones et al., 2012] andHadSST3
[Kennedy et al., 2011a, 2011b] data sets that respectively
form the land and sea components of HadCRUT4 have
been updated substantially since the work by Brohan
et al. [2006]. In this section, an overview of the updates
is presented.

2.1. The Sea-Surface Temperature Record: HadSST3

[11] The marine component of the HadCRUT4 global
near-surface temperature data set is HadSST3 [Kennedy
et al., 2011a, 2011b], an updated sea-surface temperature
anomaly data set. In this update, additional SST observations
from a number of digitization efforts have been included,
new adjustments have been developed to address recently
identified biases in SST [Emery et al., 2001; Kent and
Taylor, 2006; Thompson et al., 2008; Kennedy et al.,
2011c] and a new model of measurement and sampling
uncertainty is used.
[12] The HadSST3 data is based upon an updated version

of the International Comprehensive Ocean-Atmosphere Data
Set (ICOADS). The SST data used in HadSST2 [Rayner
et al., 2006] was sourced from ICOADS 2.0 [Worley et al.,
2005]. HadSST3 is based upon ICOADS 2.5 [Woodruff
et al., 2011]. This new version of the ICOADS databank
has benefited from many newly digitized SST data obtained
through record digitization efforts, such as those of Brohan
et al. [2009], and as a result the observational coverage in
HadSST3 has improved.
[13] Core aims in the development of HadSST3 were the

development of improved bias adjustments for sea-surface
temperature measurements and better understanding of the
uncertainties in the data. Throughout the 19th century and
early 20th century, SST measurements were typically
obtained by drawing buckets of water onto a ship’s deck.
During the 20th century the make up of the measurement
network shifted toward Engine Room Intake (ERI) water
temperature measurements, special insulated buckets, and the
use of hull contact sensors. The end of the 20th century saw
the deployment of large networks of drifting buoys and other
platforms, which continue to provide more comprehensive
temperature measurement coverage than was previously
possible using purely ship based measurements. The various
techniques used to obtain SSTs each have their own bias
characteristics. SSTs obtained using buckets tend to be
cooled by evaporation and by heat exchange with the air to a
degree that is dependent on the construction of the bucket
used. ERI measurements tend to be biased warm because of
heating of water while within the ship. Observations obtained
by buoys have their own characteristics and tend to be
obtained at different water depths than bucket or ERI
measurements. Kennedy et al. [2011b] conducted an
assessment of these large-scale measurement biases and
developed new bias adjustments to compensate for them,
along with adjustment uncertainties. The resulting bias-
adjusted data set is presented as an ensemble of 100 SST
anomaly data sets, each generated with different feasible
bias adjustments.

[14] Additionally, Kennedy et al. [2011a] developed a new
measurement and sampling uncertainty model to accompany
the bias-adjusted data. This model includes uncertainty
arising from uncorrected micro-biases unique to individual
ships or buoys; the unknown residual biases in each platform
after applying large-scale bias adjustments. These uncertain
SST micro-biases form a significant component of uncer-
tainty in time series derived from the gridded data.

2.2. The Land Surface Station Record: CRUTEM4

[15] The land-surface air temperature database that forms
the land component of the HadCRUT data sets has recently
been updated to include additional measurements from a
range of sources [Jones et al., 2012]. U.S. station data have
been replaced with the newly homogenized U.S. Historical
Climate Network (USHCN) records [Menne et al., 2009].
Many new data have been added from Russia and countries
of the former USSR, greatly increasing the representation
of that region in the database. Updated versions of the
Canadian data described by Vincent and Gullett [1999] and
Vincent et al. [2002] have been included. Additional data
from Greenland, the Faroes and Denmark have been added,
obtained from the Danish Meteorological Institute [Cappeln,
2010, 2011; Vinther et al., 2006]. An additional 107 stations
have been included from a Greater Alpine Region (GAR)
data set developed by the Austrian Meteorological Service
[Auer et al., 2001], with bias adjustments accounting for
thermometer exposure applied [Böhm et al., 2010]. In the
Arctic, 125 new stations have been added from records
described by Bekryaev et al. [2010]. These stations are
mainly situated in Alaska, Canada and Russia. See Jones
et al. [2012] for a comprehensive list of updates to included
station records.
[16] The error model used in the CRUTEM4 data set

[Jones et al., 2012] is the same as that used in CRUTEM3
[Brohan et al., 2006].

3. Ensemble Data Set Generation

[17] Uncertain systematic biases in observations can lead
to complex, interrelated patterns of uncertainty in a gridded
observational data set. For example, measurement platforms
with uncertain systematic biases moving from one grid box
to another will produce uncertainties in the gridded data set
which are correlated between grid boxes and from one
month to the next. The importance of this correlation is
dependent on both the magnitude of the uncertainty and the
number of platforms with differing or identical uncertain
biases contributing to the grid box averages. These uncer-
tainties are important for two reasons: correlated uncertain-
ties do not cancel in the computation of averages of the data;
and gradual changes in an observational network in which
systematic biases pervade can lead to low frequency com-
ponents in time series derived from the data. Accordingly, an
understanding of systematic biases in the data can be
important when studying the sensitivity of scientific analy-
ses to observational uncertainty.
[18] Given distributions of likely measurement biases,

feasible biases can be drawn from the distribution and a
gridded temperature data set can be created by applying the
derived bias adjustments. By repeating this procedure mul-
tiple times, drawing different bias realizations each time, an
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ensemble of gridded data sets is created, which together
capture the complex spatial and temporal structure of
uncertainties that arose from uncertainties in the required
bias adjustments.
[19] In this way, uncertainties in HadCRUT4 are expres-

sed by providing multiple realizations of the gridded tem-
perature anomaly data set. These represent feasible
realizations of the data set, given uncertainties in measure-
ment biases and in the applied bias adjustments. These
100 realizations are formed as one-to-one combinations of
each of the 100 HadSST3 realizations with 100 realiza-
tions of the CRUTEM4 data set, as shown in Figure 1.
Section 3.1 provides an overview of ensemble generation
in HadSST3. The generation of ensemble members from
the CRUTEM4 uncertainty model is described in section 3.2.
The method by which the HadCRUT4 data set is generated
by blending the land and sea ensembles is described later in
section 4.

3.1. The HadSST3 Ensemble Data Set

[20] A brief overview of the HadSST3 uncertainty model
and ensemble generation is presented in this section. For a
full description, see Kennedy et al. [2011a, 2011b].
3.1.1. SST Bias Adjustment Realizations
[21] Differences in techniques for measuring sea-surface

temperature, such as the use of engine room intake (ERI)
measurements, measurements from various forms of buckets
or the use of drifting or tethered buoys, lead to large-scale
biases in SST measurements. In HadSST3, large scale bias
adjustments are applied to gridded SST anomalies to com-
pensate for differences in measurement technique. Large-
scale adjustments applied to gridded SST anomalies are
derived from a number of sources: for engine room intake
(ERI) measurements they are inferred from literature on the
subject; bucket measurement adjustments are drawn from
the model of Rayner et al. [2006]; and adjustments for
drifting buoys are derived from matchups of coincident ship
and buoy measurements (see Kennedy et al. [2011b] for

details). Uncertainties in bias adjustments applied to the
gridded anomalies have complicated spatial and temporal
correlations caused both by geographic variations in relative
fractions of measurements obtained using each technique
and changes in measurement network composition over
time. The interdependencies of uncertainty in the HadSST3
data set are represented by creating multiple realizations of
the data set, each using different realizations of bucket, ERI
and drifting buoy bias adjustments. These bias adjustment
realizations are created through a combination of adjust-
ments for each measurement type, weighted by the fractions
of measurements in each grid box (which are uncertain)
obtained using each of the observation techniques. These
realizations are then added to the gridded temperature
anomalies to create multiple realizations of the SST data set
representing uncertainty in the required bias adjustments.
Together these realizations span the distribution of uncer-
tainties in the bias adjustments, encoding spatial and tem-
poral interdependencies resulting from differing geographic
distributions of measurement methods and changes in the
makeup of the measurement network over time.
3.1.2. SST Measurement and Sampling Error
[22] In addition to large-scale bias adjustments and related

uncertainties, the HadSST3 uncertainty model also incor-
porates uncertainties in individual measurements, inter-
platform biases or micro-biases, and sampling uncertainty
arising from the formation of grid box averages from a
limited number of discrete measurements. The inclusion of
uncorrected micro-biases (systematic biases in individual
measurement platforms around the mean bias of a specific
platform type) in the uncertainty model results in uncer-
tainties that are correlated between grid boxes and in time.
These are not explicitly included in the ensemble members
and are instead provided in HadSST3 as monthly error
covariance matrices describing these correlated uncertainty
components.

Figure 1. The generation of the HadCRUT4 ensemble by land-fraction-weighted one-to-one blends of
the 100 HadSST3 ensemble members with 100 realizations of the CRUTEM4 data set.
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3.2. The CRUTEM4 Ensemble Data Set

[23] The CRUTEM4 data set [Jones et al., 2012] is not an
ensemble data set. However, the CRUTEM4 uncertainty
model [Brohan et al., 2006] contains various sources of

uncertainty that can be well represented through the use
of the ensemble approach. Specifically, homogenization
adjustment uncertainties, uncertainties in the calculation of
long-term averages over the 1961–1990 climatological nor-
mal reference period, and uncertain biases arising from
urbanization and sensor exposure have correlation structures
that complicate the computation of uncertainties in diag-
nostics such as time series computed from the grid box
anomalies. Rather than directly combine the non-ensemble
CRUTEM4 data set with the ensemble HadSST3 data set,
the method adopted here is to first construct an ensemble
version of CRUTEM4 by drawing possible error realizations
from the Brohan et al. [2006] uncertainty model and com-
bining them with station records. This allows easy calcula-
tion of uncertainty ranges in averages of grid box anomalies
arising from correlated uncertainties. It also allows straight-
forward blending of the land near-surface air temperature
measurements with the ensemble HadSST3 data set, as is
described later in section 4.
3.2.1. Combining Realizations of Possible Errors With
Station Records
[24] This section describes the manner in which error

components are combined with station records to produce
the ensemble members of CRUTEM4. The ensemble reali-
zations of CRUTEM4 are drawn by perturbing the station
time series and gridded anomaly values with plausible reali-
zations of known uncertainties described by the CRUTEM4
uncertainty model that have spatial or temporal correlation
structures. These are the station homogenization error ɛH,
the station climatological normal error ɛN and large scale
urbanization and exposure biases, ɛu, and ɛe. A schematic
of the procedure used to combine these components with
land station records is shown in Figure 2. Example reali-
zations of the uncertainty components sampled in genera-
tion of ensemble members are shown in Figure 3. Each of
these uncertainty components is discussed in turn in the
following sections, along with descriptions of the methods
used to draw plausible realizations of each component.
[25] In this study, the true monthly average temperature at

a meteorological station Ttrue for a given month is consid-
ered to be related to the observed monthly average temper-
ature through the following relationship:

Tobs þ CH ¼ Ttrue þ ɛobs þ ɛH ð1Þ

where Tobs is the observed temperature, CH is a homogeni-
zation correction applied to remove inhomogeneities in the
station record, ɛobs is a random measurement error and ɛH is
the error in the applied homogenization correction. Each of
these error components, and any temporal correlation struc-
tures they may have are discussed in detail in the following
sections. Ideally, the above equation would also include the
effects of urbanization and changing sensor exposure, aris-
ing from changes in enclosures used to shield thermometers
from the elements. These terms are omitted at this stage as
the urbanization and sensor exposure models used here are
based on studies of the influence of these factors on regional
averages, and the derived biases may not be representative of
the influence of these factors on individual station records.
These factors are instead applied to gridded temperature
anomalies.

Figure 2. Flowchart of the ensemble CRUTEM4 data set
generation process, with processes that are allowed to vary
in each ensemble member indicated.
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[26] To calculate a temperature anomaly from a station’s
monthly average temperature, a climatological station nor-
mal is calculated. The true climatological station normal TN
is defined as follows:

TN ¼ avg1961�1990 Tobs þ CH � ɛobs � ɛHð Þ � ɛN

¼ ~T N � ɛN ð2Þ

where ~T N is an estimate of the climatological station normal
and ɛN is the error in this estimate arising from measurement
error and the computation of normal temperatures from a
finite number of years of data.
[27] Here the climatological station normal for each month

is computed over all instances of a calendar month over the
1961 to 1990 period. The true station temperature anomaly
Ta is therefore given by:

Ta ¼ Tobs þ CH � ɛobs � ɛH � ~T N þ ɛN : ð3Þ

[28] As ensemble members of CRUTEM4 only include
realizations of uncertainties that have temporal or spatial

correlations, the random observational error ɛobs in a monthly
station average is not included in the ensemble members.
This observational uncertainty component is uncorrelated
between different observations and stations and can be
readily added to the ensemble if required. A realization of the
true monthly station anomaly is then produced, by perturbing
the observed value, as follows:

Ta ¼ Tobs þ CH � ɛH � ~T N þ ɛN : ð4Þ

[29] Here Tobs + CH represents the homogenized station
temperature series provided in the CRUTEM4 database
(having performed an outlier check as described by Jones
et al. [2012]). Realizations of ɛH are drawn as described in
section 3.2.1.1 and realizations of ɛN are drawn as described
in section 3.2.1.2.
[30] Grid box anomaly realizations are computed as an

average of all perturbed station records for stations lying
within the same 5� latitude by 5� longitude grid box. As
described by Brohan et al. [2006], this average is subject to a
sampling error ɛs which is the error in computing a grid box

Figure 3. One hundred realizations of each uncertainty component contributing to the CRUTEM4
ensemble realizations, with an example realization of each component highlighted in red. Homogenization
and station normal error realizations are drawn for each individual station record. Urbanization bias
instances apply globally. Different values of exposure bias are applied uniformly across the extratropics
(shown) and the tropics.
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average temperature frommeasurements at a finite number of
positions. Like the measurement error ɛobs, the sampling
error is uncorrelated between grid boxes and in time and so
realizations of this uncertainty component are not encoded
into the ensemble members. As realizations of urbanization
and exposure biases represent the possible influence of these
factors on regional averages, rather than on individual sta-
tions, realizations of the large-scale urbanization, ɛu, and
exposure, ɛe, biases are removed from the grid box anoma-
lies. For an individual ensemble member, each monthly grid
box anomaly in the gridded data set is therefore computed as:

Aland ¼ 1

K

XK
n¼1

Ta n½ �

 !
� ɛu � ɛe; ð5Þ

where Aland is a realization of the CRUTEM4 monthly grid
box temperature anomaly computed from K perturbed station
anomalies Ta[n] located within the grid box.
[31] The following sections describe each of the (possible)

error realizations, ɛH, ɛN, ɛu, and ɛe, and each of their cor-
relation structures in detail.
3.2.1.1. Station Homogenization Adjustment Error
[32] Homogenization is the process of identification

and removal of artifacts in station records such as those
caused by changes in measurement equipment, relocation
of stations within their local area, changes in time of day
of measurements, and changes in methods used to compute
monthly mean temperatures. Homogenization adjustments
have been applied to the land station data included in
HadCRUT4 [Jones et al., 2012]. Brohan et al. [2006]
compared adjusted time series in the CRU archive to unad-
justed records where unadjusted records were available.
Through this comparison it was concluded that small dis-
continuities in station records were difficult to detect in the
homogenization process and that a residual error in the
homogenization process exists. This error was modeled as a
zero mean Gaussian distribution with a standard deviation
of sH = 0.4�C. Recent studies of homogenization uncer-
tainty report broadly similar magnitudes of homogenization
uncertainty [DeGaetano, 2006; Menne and Williams, 2009;
Menne et al., 2009] and so the model of sH = 0.4�C is
maintained in CRUTEM4 and HadCRUT4. The assessment
of the Brohan et al. [2006] analysis was that homogenization
step changes occurred on average every 40 years, which is
the average occurrence rate used in this study. It is worth
mentioning that in a study of U.S. stations, Menne et al.
[2009] detected a more frequent average step change rate
of 15–20 years. This difference may have arisen because
of different methods for detecting required adjustments,
regional differences in changing measurement practice (such
as the documented large scale movement toward the use of
automated stations in the U.S. in the 1980s) or improved
detection of changes owing to the density of the U.S. network.
[33] The ensemble approach allows the correlation struc-

ture resulting from uncertainties in the homogenization
process to be encoded into the ensemble members. To gen-
erate an ensemble member, a series of possible errors in the
homogenization process was created by first selecting a set
of randomly chosen step change points in the station record,
with each point indicating a time at which the value of the
homogenization adjustment error changes. These change

points are drawn from a Poisson distribution with a 40 year
repeat rate. For each period of constant homogenization
adjustment error, a value of the adjustment error ɛH is then
drawn from a zero mean Gaussian distribution with a stan-
dard deviation of sH = 0.4�C. This mimics the behavior of
undetected or residual inhomogeneities in station records, as
described by Brohan et al. [2006]. Example realizations of
plausible homogenization error for a single station are
shown in Figure 3.
[34] Note that the formulation of the homogenization

model used to generate ensemble members is designed only
to allow a description of the magnitude and temporal
behavior of possible homogenization errors to contribute to
the calculation of uncertainties in regional averages. Change
times are unknown and chosen at random, so realizations of
change time will be different for a given station in each
member of the ensemble. Additionally, the model used here
does not describe uncertainty in adjustment of coincident
one-way step changes associated with countrywide changes
in measurement practice, such as those discussed by Menne
et al. [2009] for U.S. data.
3.2.1.2. Station Climatological Normal Uncertainty
[35] The climatological normal uncertainty represents the

uncertainty in forming the calendar monthly climatological
average temperatures over the 1961 to 1990 reference period
used to convert temperatures into anomalies. As in work by
Brohan et al. [2006], the station climatological normal
uncertainty is modeled as being totally temporally correlated
for a given calendar month in all years, and uncorrelated
between different calendar months. This uncertainty com-
ponent is totally uncorrelated between differing stations.
[36] In the ensemble version of CRUTEM4, a single

sample of the possible climatological normal error is drawn
for each station for each of the 12 calendar months of the
year. These 12 realizations are held constant for all years in
the station record. Samples are drawn from a Gaussian dis-
tribution with zero mean and a standard deviation that is
dependent on the number of years of data that are available
at a station in the 1961–1990 reference period. For stations
with at least 14 years of data in the 1961–1990 reference
period, the sampling distribution of the station climatologi-
cal normal error ɛN has a standard deviation of sw=

ffiffiffi
P

p
,

where sw is the standard deviation of observed monthly
temperatures at a station (here computed over a period of
1941–1990) for a given calendar month, and P is the number
of years of station data in the 1961–1990 reference period
for that calendar month. For some stations without 14 years
of data available in the normal reference period, station
normals are available from the World Meteorological
Organization (WMO) [1996]. Where climatological station
normals were obtained from the WMO, the analysis of
Brohan et al. [2006] found that uncertainties in climatolog-
ical station normals were equivalent to about 0.3sw. As in
work by Brohan et al. [2006], uncertainties are attributed to
climatological station normals obtained from the WMO by
scaling sw by this factor.
3.2.1.3. Urbanization Bias
[37] The urbanization bias model used here is that of the

CRUTEM4 data set [Jones et al., 2012], as described by
Brohan et al. [2006]. It is based upon studies of the effect of
urbanization on large-scale temperature anomaly averages,
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rather than on urbanization at specific stations. Since the
review of urbanization presented by Brohan et al. [2006],
further studies have been conducted to assess both large-
scale and regional urbanization effects, many of which are
summarized in a review by Parker [2010]. Comparisons of
observations over the eastern U.S. to dynamic reanalysis
reconstructions by Kalnay et al. [2006] indicated an urban-
ization effect of 0.09�C per decade. In China, Jones et al.
[2008] found warming trends over the period of 1951 to
2004 of 0.08 to 0.1�C per decade. A study of Japanese sta-
tion records estimated an effect of approximately 0.1�C per
decade over the 20th century [Fujibe, 2009]. To study the
effect on global trends, Efthymiadis and Jones [2010] stud-
ied differences between gridded land station observations
and SST in coastal regions, coming to the conclusion that the
average effect of urbanization is between zero and 0.02�C
per decade across the globe, with the caveat that the upper
value is a conservative estimate as temperatures over land
are known to warm at a greater rate than SST. Because
regional studies of urbanization have only been conducted
for a limited number of regions, and because results of recent
studies are compatible with the Brohan et al. [2006]
assessment, the urbanization model used here is based
upon work by Brohan et al. [2006].
[38] The influence of urbanization on global and regional

averages is modeled as a one sided uncertainty in tempera-
ture measurements; urbanization may lead to temperature
measurements that are on average warmer, but not cooler
than regionally representative temperatures. The value of the
urbanization bias, ɛu, is assumed to have a value of 0.0�C
prior to 1900 and then increase linearly at a constant rate.
This warming rate is sampled from a truncated Gaussian
distribution. A realization of the warming rate is drawn from
a Gaussian distribution with a standard deviation of
0.0055�C per decade. If a negative warming rate is drawn,
the warming rate is set to 0.0�C per decade, representing the
findings of a number of studies that indicate no statistically
significant effect of urbanization on regionally averaged
temperatures.
3.2.1.4. Exposure Bias
[39] The exposure bias component of the uncertainty

model represents the uncertainty in measurement bias on a
regional to global scale arising from the introduction of new
varieties of measurement sensor enclosures throughout his-
tory. Examples of this are the changes in biases in hemi-
spheric averages arising from the transition from thatched
enclosures and north wall (in the NH) facing exposures to
Stevenson-type shelters.
[40] As in work by Brohan et al. [2006], the exposure bias

model followed is that of Folland et al. [2001], which is
derived from the results of Parker [1994]. For grid boxes in
the latitude range of 20�S–20�N a 1s uncertainty of 0.2�C is
assumed prior to 1930. This then decreases linearly toward a
value of zero in 1950. For stations that lie outside of 20�S–
20�N the exposure bias uncertainty takes a value of 0.1�C
prior to 1900, decreasing linearly to zero by 1930. Ensemble
members are generated from this model by drawing a single
random number from a standard normal distribution for each
ensemble member, which is then scaled for each grid box by
the appropriate 1s uncertainty range based on latitude and
time as described above to produce an exposure bias reali-
zation, ɛe.

[41] There is scope for construction of a more detailed
exposure bias model in future. Seasonal cycles in exposure
biases were identified by Parker [1994] for various enclo-
sure types. Moberg et al. [2003] found evidence of bias
seasonality in Swedish station records. Böhm et al. [2010]
derived bias adjustments for the Greater Alpine Region
prior to 1870. These adjusted data for the Greater Alpine
Region are incorporated into HadCRUT4, although uncer-
tainties in the applied bias adjustments are not explicitly
accounted for in the HadCRUT4 error model. If a more
detailed exposure bias model is to be constructed for the
global data set then further study of seasonality in regional
exposure biases is required.
3.2.2. Measurement and Sampling Error
[42] The models of random measurement error, ɛobs, and

sampling error, ɛs, used in this analysis are exactly as
described by Brohan et al. [2006]. Sampling error has been
recomputed using the Jones et al. [1997] method, with inter-
grid box correlations recomputed from the CRUTEM4 sta-
tion data. As the model of measurement and sampling error
used here for land stations has no temporal or spatial corre-
lation structure, there is no need for the use of an ensemble
approach to describe these error components. These com-
ponents are instead attributed to each ensemble member
when time series are computed.

4. Blending Land and Sea Components

[43] CRUTEM4 and HadSST3 overlap in grid boxes
which are partially land and partially sea. Here we combine
land air temperature and SST anomalies and their measure-
ment and sampling uncertainties.

4.1. Fractional Area Weighting

[44] The blending approach adopted here differs from that
used in the Brohan et al. [2006] data set. Here, land and sea
components are combined at a grid box level by weighting
each component by fractional areas of land and sea within
each grid box, rather than weighting in inverse proportion to
error variance. This approach has been adopted to avoid over
representation of sea temperatures in regions where SST
measurements dominate the total number of measurements
in a grid box. The grid box average temperature A[i] for grid
box i is formed from the grid box average temperature
anomalies A[i]

land for the land component, A[i]
SST for the SST

component, and the fractional area of land in the grid box f[i]
as follows:

A i½ � ¼ f i½ �Aland
i½ � þ 1� f i½ �

� �
ASST

i½ � ð6Þ

[45] Coastal grid boxes for which the land fraction is less
than 25% of the total grid box area are assigned a land
fraction weighting of 25%. Here, we are making the
assumption that land near-surface air temperature anomalies
measured in grid boxes that are predominantly sea covered
are more representative of near-surface air temperature
anomalies over the surrounding sea than sea-surface tem-
perature anomalies. These fractions ensure that islands with
long land records are not swamped by possibly sparse SST
data in open ocean areas (where the island is only a small
fraction of the total grid box area).
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4.2. Blending Ensemble Members

[46] To produce the gridded temperature anomaly ensem-
ble, the 100 land near-surface air temperature anomaly
ensemble members have been blended with 100 SST anom-
aly ensemble members on a one-to-one basis. This results in a
set of 100 realizations of the global temperature anomalies
with respect to a 1961 to 1990 reference period on a monthly
grid of 5 degrees latitude by 5 degrees longitude. Example
fields for nine ensemble members of HadCRUT4 are shown
in Figure 4.
[47] In addition to the 100 ensemble members, there are

two additional uncertainty components: the contributions to
grid box uncertainty from the uncorrelated measurement and
sampling uncertainties of the land component, CRUTEM4,
and those from the partially correlated measurement and
sampling uncertainties of the sea component, HadSST3. For
a grid box i, the combined uncertainty arising from these
two measurement and sampling error components, s[i]

land and
s[i]
SST, is:

scombined
i½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i½ �
� �2 sland

i½ �
� �2

þ 1� f i½ �
� �2 sSST

i½ �
� �2r

: ð7Þ

[48] The first of the terms under the square root, is the
contribution of land measurement and sampling uncertainty
to the grid box error variance and is totally uncorrelated
between grid boxes. The second term is the contribution

from SST measurement and sampling uncertainty, which is
correlated between grid boxes. For these uncertainties in the
SST component to be propagated into regional averages, it is
necessary to compute global error covariance matrices of
SST uncertainty contributions, weighted by fractional areas
of SST. In this weighting scheme, cross-covariances C[i, j]

between grid boxes i and j of the HadCRUT4 grid box
measurement and sampling uncertainty are computed from
the HadSST3 cross-covariances V[i, j] as follows:

C i;j½ � ¼ 1� f i½ �
� �

1� f j½ �
� �

V i;j½ �; ð8Þ

which is equal to the grid box error variance arising from
SST measurement and sampling uncertainty for grid box i
when i = j. The above equation defines the elements of
HadCRUT4 error covariance matrices describing grid box
uncertainty arising from SST measurement, sampling and
micro-bias uncertainty. The construction of uncertainties in
time series derived from the gridded data is described in
section 5.

5. Calculation of Global and Regional Time Series

5.1. Anomaly Time Series

[49] Monthly regional average temperature anomaly time
series for each ensemble member are computed as weighted
averages of the gridded temperature anomalies in the region
of interest. Grid box weights are chosen to be proportional to

Figure 4. Annual average surface temperature anomalies for 2008 (�C with respect to 1961–1990) for
9 ensemble members of HadCRUT4. Anomalies are shown only for grid boxes in which at least
6 months of data are available.
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grid box area. Using the grid box temperature anomalies A[i]

and weights w[i], a monthly regional average temperature
anomaly Ā is computed over N grid boxes with non-missing
data as:

�A ¼
XN
i¼1

w i½ �A i½ �; ð9Þ

where the weights w[i] of data filled grid boxes are normal-
ized to sum to one. To compensate for different sampling of
the northern and southern hemispheres, global averages ĀG

are computed from the northern and southern hemisphere
averages, ĀNH and ĀSH, as:

�AG ¼
�ANH þ �ASH

2
: ð10Þ

[50] Annual, seasonal or other multimonth time series are
computed as a simple average of the monthly time series.
Annual averages are computed over M = 12 months as:

�Aannual ¼
sum �Amonthly

� �
M

: ð11Þ

[51] Note that the order of averaging in this method is
different from the method of Brohan et al. [2006], in which
annual anomalies were calculated by first computing annual
averages of temperatures in each grid box and then comput-
ing a grid box area weighted average of the annual tempera-
ture field. The two methods place different weight on
anomalies in grid boxes in which observations are not avail-
able for all months. Resulting differences in annual averages
are small in comparison to the computed uncertainties.

5.2. Uncertainties in Calculated Time Series

[52] Measurement and sampling uncertainties are not
included in the individual ensemble members and are instead
handled analytically in computation of temporal and spatial
averages. Note that here, sampling uncertainty is the error
due to under-sampling of individual grid boxes and is dis-
tinct from coverage uncertainty, which relates to under-
sampling of regions by grid boxes containing measurements.
5.2.1. Land Station Measurement and Sampling
Uncertainties
[53] As the land component of grid box measurement and

sampling uncertainties is completely uncorrelated between
grid boxes, the resultant uncertainty in monthly regional
averages, su, is computed from N grid boxes, with grid box
measurement and sampling errors of s[i]

u , as follows:

su ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

w i½ �su
i½ �

� �2vuut ð12Þ

[54] To compute land measurement and sampling uncer-
tainty in global averages, sG

u , uncertainties in northern
hemisphere and southern hemisphere regional averages are
first computed using the above equation. These uncertainties
are denoted sNH

u and sSH
u . The uncertainty in global averages

due to land measurement and sampling error is then com-
puted as:

su
G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5su

NH

� �2 þ 0:5su
SH

� �2q
ð13Þ

[55] As measurement and sampling uncertainties in land
station data also have no temporal correlation structure, land
contributions to measurement and sampling uncertainties in
annual averages are computed from uncorrelated uncertain-
ties in monthly regional averages as follows:

su
annual ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sum su

monthly

� �2� �s

M
: ð14Þ

5.2.2. Correlated SST Measurement and Sampling
Uncertainties
[56] When measurement and sampling uncertainties in the

monthly gridded temperatures have a complicated pattern of
grid box to grid box correlations, the uncertainties are
represented by error covariance matrices. This applies to
uncertainties in SSTs from 1981 onwards. Although error
covariance matrices for HadSST3 are available prior to
1981, the entries for these covariance matrices are incom-
plete, owing to incomplete metadata describing individual
historical ships’ call signs, which are required to construct
spatial correlation patterns. Here, we include an update to
HadSST3 which contains information on modern ships’ call
signs after November 2007. Thus we are able to extend the
method of Kennedy et al. [2011a] to calculate error covari-
ance matrices after 2006.
[57] Uncertainty in a monthly regional average tempera-

ture anomaly, arising from correlated measurement and
sampling uncertainties sc, is computed from the error
covariance matrices as follows:

sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
bTCb

p
; ð15Þ

where b is a vector of normalized weights with bT =
[w[1], ⋯, w[i], ⋯ w[n]], and C is the error covariance matrix
with elements equal to the cross-covariances between grid
boxes arising from SST measurement and sampling uncer-
tainty, weighted by their fractional grid box areas of sea.
Here the elements of b are zero where there is neither a land
nor sea measurement contributing to the grid box. Otherwise
they are proportional to grid box area, such that the weights
are normalized to sum to one.
[58] For calculation of uncertainties in global averages

from the error covariance matrix, the weights are stored in a
matrix B which is formed as:

B ¼ wNH 0
0 wSH

	 

; ð16Þ

where wNH is a normalized vector of weights for northern
hemisphere grid points and wSH is a normalized vector of
weights for southern hemisphere grid points, and 0 is a
vector of N/2 zeros. The weight vectors should contain zero
entries at locations relating to grid points in the hemisphere
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with missing data and nonzero values at entries relating to
any grid point in the hemisphere at which there is tempera-
ture data. An error covariance matrix CNS for the hemi-
spheric averages is then computed as:

CNS ¼ BTCB ð17Þ

[59] This covariance matrix contains the error variances of
the northern and southern hemisphere averages on its diag-
onal and the cross-covariance of the hemispheric values in
the off diagonal entries. The global uncertainty sG

c is then
computed as:

sc
G ¼ 0:5 0

0 0:5

	 
T
CNS

0:5 0
0 0:5

	 
 !1
2

ð18Þ

[60] Prior to 1982 insufficient metadata is available to
adequately account for the full correlation structure of
measurement and sampling uncertainty for SST. Our
approach for handling correlation in computation of uncer-
tainties in regional averages follows the method of Kennedy
et al. [2011a]. For years following 1981, for which the
number of ships with unique call-signs is large compared to
the number of unidentifiable ships, Kennedy et al. [2011a]
calculated the ratios of uncertainties obtained using the full
error model to those calculated from just the diagonal entries
of the monthly error covariance matrices. Kennedy et al.
[2011a] found that prior to 1982 the SST contribution to
uncertainties in regional averages can be well approximated
by scaling the uncertainties calculated from the diagonal of
the covariance matrices by set scale factors: global, 2.2;
northern hemisphere, 1.9; southern hemisphere, 2.2; tropics,
2.2. These scale factors are used here to compute the con-
tribution of this uncertainty component to uncertainty in
regional averages prior to 1982.
[61] Following Kennedy et al. [2011a], the measurement

and sampling uncertainty in regional averages incorporating
SSTs is modeled as having a temporal correlation structure,
arising from uncorrected biases persisting in measurements
from individual measurement platforms. The computation of
this error component for annual averages is based on an
assumed effective number of independent monthly averages
in a year, neff. Using this methodology, the contribution of
SST measurement and sampling errors to uncertainties in
annual average anomalies is computed from those of
monthly regional averages as:

sc
annual ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sum sc

monthly

� �2� �
12neff

vuuut
: ð19Þ

[62] The value of neff used here is that computed by
Kennedy et al. [2011a] for annual averages of HadSST3
data, neff = 2.25.
[63] This model of uncertainty in SST measurements

assumes that the effects of micro-biases on SST anomaly
time series are autocorrelated. If realizations of this auto-
correlated uncertainty component are required, for example
if the influence of temporally correlated uncertainties is to be

taken into account in fitting trends to time series, realizations
should be drawn taking this autocorrelation into account.
Time series of possible measurement and sampling error in
SSTs should be drawn from a zero mean distribution with an
error covariance matrix with elements:

cov �A k½ �; �A l½ �
� � ¼ sc

k½ �s
c
l½ �corr �A k½ �; �A l½ �

� �
; ð20Þ

where Ā[k] is a regional average for month k, Ā[l] is a regional
average for month l, cov(Ā[k], Ā[l]) is the autocovariance
between them and corr(Ā[k], Ā[l]) is their autocorrelation.
Here, autocorrelations between months take a value of corr
(Ā[k], Ā[l]) = 8|k � l|, where the correlation parameter 8 is
equal to 8 = 0.77.

5.3. Coverage Uncertainty

[64] An additional component of uncertainty arises from
the computation of spatial and temporal averages using
gridded anomaly fields in which not all grid boxes are
populated with measurements. For HadCRUT4, the cover-
age uncertainty calculation follows the same method as that
described by Brohan et al. [2006]. To compute coverage
uncertainty in HadCRUT4 time series, NCEP reanalysis
[Kalnay et al., 1996] near-surface temperatures are sub-
sampled to HadCRUT4 coverage and differences are com-
puted between averages calculated using NCEP reanalysis
temperature anomalies with global coverage and with
reduced (sub-sampled) coverage. For annual/monthly series,
the coverage uncertainty for a given year/month is estimated
by first applying the observational coverage for that year/
month to every year/equivalent calendar month in the
reanalysis. The required average is then computed for each
year/equivalent calendar month in the reanalysis for both the
sub-sampled and complete data, and residuals between these
averages are computed. For any given observational cover-
age, the coverage uncertainty is estimated as the standard
deviation of these residuals.

6. Improvements to Global Coverage

[65] Both the land and sea components of HadCRUT4
have benefited from additional historical temperature data, as
described in section 2. Many of these additional measure-
ments are from regions of the globe that were poorly repre-
sented by Brohan et al. [2006]. The resulting improvement in
global coverage can be seen in Figure 5. Much of the
improvement in coverage in the early record is due to the
digitization of additional SST data. The new land station data
sourced for CRUTEM4 has greatly improved observational
coverage across Russia. Arctic coverage has improved
notably (particularly in Russia and Canada) throughout the
record. Measurement coverage in the Southern Ocean and the
Antarctic remains sparse.

7. Discussion of Global and Regional Time Series

7.1. Global Time Series

[66] Monthly, annual and decadally smoothed global-
average temperature anomaly time series from HadCRUT4
are shown in Figure 6, along with uncertainties in the time
series arising from measurement and sampling error, bias
uncertainties (uncertainty in homogenization error, sensor
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exposure, urbanization, and SST bias adjustments), and
incomplete observational coverage. The relative magnitudes
of the various uncertainty components depend on the area
and time scale considered, as discussed in this section.
[67] Measurement and sampling uncertainties in HadCRUT4

are a combination of totally uncorrelated measurement and
sampling uncertainties in the land station record and mea-
surement and sampling uncertainties in sea-surface tem-
peratures that have both spatial and temporal correlation
resulting from micro-biases in individual ships and buoys.
These micro-biases in marine observations produce uncer-
tainties in gridded sea-surface temperatures that may be
dependent across multiple grid boxes locations and times
(see section 5.2.2). These correlated uncertainties now form

a large contribution to the uncertainty in both spatially and
temporally averaged temperature anomaly time series.
However, as autocorrelation lengths in SST measurement
uncertainty are relatively short in comparison to those of
large-scale bias adjustment uncertainty, the measurement
uncertainty in SSTs tends to reduce in the computation of
annual averages and decadally smoothed series.
[68] Bias-related uncertainties include contributions from

both CRUTEM4 and HadSST3. From CRUTEM4, this
includes uncertainties in homogenization adjustments
applied to the station records, in the calculation of long-term
averages for the 1961 to 1990 reference period and the
influence of urbanization and changes in sensor exposure.
From HadSST3, this comprises uncertainties in sea-surface

Figure 5. Improvements in global coverage in HadCRUT4. (top) The percentage of global area
observed. (bottom) Anomaly maps for HadCRUT3 and HadCRUT4 for months of notable improvement
in observational coverage. Maps show gridded temperature anomalies (�C) with respect to grid box aver-
age temperatures in the period of 1961–1990.
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Figure 6. Global average HadCRUT4 temperature anomaly time series 1850–2010 (�C, relative to the
long-term average for 1961–90). (first and second plots) Monthly time series and components of uncer-
tainty in monthly averages. (third and fourth plots) Annual time series and components of uncertainty
in annual series. (fifth and six plots) Decadally smoothed series and components of uncertainty in the
decadally smoothed series.
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temperature bias adjustments. Because the uncertainties in
the effect of urbanization, land sensor exposure uncertainty
and SST bias adjustment uncertainty are strongly related
over large spatial scales, these reduce little when producing
regional averages. For this reason, the bias uncertainty is a
large fraction of the total uncertainty in the global average
temperature anomaly time series. All components of bias
uncertainty are also strongly correlated over long time
scales, and so tend to reduce little in the computation of
annual and decadally smoothed averages when compared to
measurement and sampling uncertainties.
[69] Coverage uncertainty represents the range of likely

errors in regional averages computed from data with incom-
plete spatial coverage. Autocorrelation exists in the coverage
uncertainty because of the persistence of weather patterns
in unobserved regions and because measurement coverage
does not change dramatically from month to month. As the
coverage uncertainty is computed by sub-sampling reanaly-
sis data, i.e., using a measurement-assimilating dynamical
model (see section 5.3), this autocorrelation is captured in the
coverage uncertainty so long as typical persistent weather
patterns in the reanalysis data used are representative of
the real world in unobserved regions. Coverage uncertainty
is a large component of uncertainty at monthly time-scales
and continues to be a large component of uncertainty in
annual and decadally smoothed series, despite the improved
observational coverage in HadCRUT4.

7.2. Comparison to HadCRUT3 Global Time Series

[70] The improvements in HadCRUT4, including the
greater number of observations, the new sea-surface tempera-
ture bias adjustments and the updated sea-surface temperature
uncertainty model have resulted in a refined time series of
global average temperatures. Figure 7 shows the annual time
series, with 95% confidence intervals, for HadCRUT4 com-
pared to the equivalent series for HadCRUT3.

[71] Refinements to the bias adjustments have altered
the time series most significantly in the period from the
mid 1940s to the end of the 1960s. During this period, the
HadCRUT4 median lies close to, or just outside of, the upper
confidence limit of the HadCRUT3 time series. The period
from the mid-1940s to the 1960s is warmer in HadCRUT4
than in HadCRUT3, largely as an effect of the new bias
adjustments that have been applied to the sea-surface tem-
perature data. These account for a large number of uninsu-
lated bucket observations in the International Comprehensive
Ocean-Atmosphere Data Set between 1945 and 1970 (see
Kennedy et al. [2011b] for details).
[72] Further differences between the HadCRUT4 and

HadCRUT3 time series can be seen in recent years. Both
CRUTEM4 and the HadSST3 median indicate warmer
temperatures in the last 10 years than in the previous version
of each data set. This results from the improved measure-
ment coverage in CRUTEM4, particularly in Asia and at
high latitudes in the northern hemisphere, and from the new
bias adjustments applied in HadSST3 to account for the
effect of the shift from ship based measurements to the use
of buoys. However, the difference in these recent tempera-
tures between HadCRUT4 and HadCRUT3 is small in
comparison to the uncertainties in global annual temperature
estimates.
[73] The size of the uncertainty range in HadCRUT4

is typically similar to or slightly larger than that of
HadCRUT3, despite the increased number of stations
included in the data set. This largely stems from the inclu-
sion of interdependencies of sea-surface temperature mea-
surement uncertainties arising from SST micro-biases.
Because of the inclusion of these interdependencies, when
temperature anomalies are averaged globally their uncer-
tainties do not reduce to the same degree as they were con-
sidered to in HadCRUT3. This offsets the reduction in

Figure 7. Comparison of annual, global average temperature anomalies 1850–2010 (�C, relative to the
long-term average for 1961–90) for the HadCRUT4 median (red) and HadCRUT3 (blue). 95% confidence
intervals are shown by the shaded areas.
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coverage uncertainty achieved through the inclusion of
additional records in HadCRUT4.

7.3. Regional Time Series

[74] Monthly and annual average and decadally smoothed
time series and associated uncertainties have been computed
from HadCRUT4 for the northern hemisphere (Figure 8),
southern hemisphere (Figure 9) and the tropics (30�S–30�N)
(Figure 10). In all three regions, the contributions of the
measurement and sampling error are greater than was the
case in work by Brohan et al. [2006], owing to the inclusion
of correlated sea-surface temperature measurement error in
the uncertainty model. Measurement and sampling error in
the southern hemisphere and the tropics are a larger fraction
of the total uncertainty than in the northern hemisphere. This
arises from historical sea-surface temperature measurements
in the southern hemisphere and in the tropics being obtained
by relatively few ships in comparison to the northern hemi-
sphere [Kennedy et al., 2011a]. Because fewer measurements
contribute to regional averages than to global averages, and
because interdependence of errors in sea-surface temperature
measurements tends to be strongest for measurements that
are locally close, measurement and bias-related uncertainties
in regional averages tend to be larger than for global
averages.
[75] Uncertainties arising from limited coverage remain a

major component of uncertainty in regional averages. Large
coverage uncertainties in the northern hemisphere monthly
averages likely arise from the scarcity of measurements at
the highest latitudes, i.e., in the Arctic Ocean. Measurement
coverage of the southern hemisphere has not improved sig-
nificantly in HadCRUT4. Coverage uncertainty remains the
largest component of uncertainty here, due to poor coverage
of the Antarctic and Southern Ocean, as well as only spo-
radic coverage in parts of South America and Africa. In the
tropics, temperature anomalies tend to vary little over large
distances. Measurement coverage over the ocean is generally
good in this region in HadCRUT4. As a result, coverage
uncertainties tend to be small for the tropics.

7.4. Comparisons to Other Global Temperature
Analyses

[76] Figure 11 shows a comparison of HadCRUT4 time
series with three other analyses of global temperatures: that
of NASA’s Goddard Institutes of Space Studies (GISS)
[Hansen et al., 2010], that of NOAA’s National Climatic
Data Center (NCDC) [Smith et al., 2008; Menne and
Williams, 2009] and that of the Japanese Meteorological
Agency (JMA) (Ishihara et al., submitted manuscript, 2012).
The depicted series largely rely on the same core set of
measurements, with the addition of some supplementary
records in each analysis (see references for details).
Although the bulk of the measurement records in each data
set are the same, there are differences in data set construction
methodologies and time series calculation methods, as
summarized by Kennedy et al. [2010].
[77] Despite these differences, the data sets are in broad

agreement about large scale surface temperature develop-
ment. Temperatures in HadCRUT4 are typically warmer
than other analyses from the mid 1940s through to around
1960 in global, hemispheric and tropical time series, with
NCDC and JMA analyses lying outside of the uncertainty

range of HadCRUT4 for much of this period. The difference
between HadCRUT4 and other data sets in this period is
largely due to the bias adjustments applied in HadSST3 to
account for a shift from ERI based SST measurements to the
use of uninsulated buckets in this period [Thompson et al.,
2008], the effects of which can be seen in comparisons
of HadSST3 with other SST data sets of Kennedy et al.
[2011b]. The GISS, NCDC and JMA data sets do not
include such bias adjustments in this period.
[78] In Figure 11, least squares linear trends in time series

are shown for the periods of 1901 to 2010 and 1979 to 2010.
Trends in HadCRUT4 global average temperatures are
0.074�C per decade over 1901 to 2010 and 0.169�C per
decade over 1979 to 2010. Northern hemisphere/southern
hemisphere trends for HadCRUT4 are 0.077/0.071�C per
decade over 1901 to 2010 and 0.241/0.096�C per decade
over 1979 to 2010. The uncertainty ranges shown for
HadCRUT4 trends are 95% confidence intervals in the
trends calculated from the 100 ensemble members of the
HadCRUT4 series. These do not include uncertainty in
trends computed from any auto-regressive component of
residual departures from the computed trends. We neglect
these here, since these uncertainties are common to all data
sets and tell us nothing about differences between them. The
HadCRUT4 error bars indicate that autocorrelated uncer-
tainty components in the measurement data (which are bias
related) result in uncertainties in linear trends that are small
in comparison to observed trends for all four regions shown.
Over this long time period, computed trends are most sen-
sitive to autocorrelated uncertainties with long correlation
lengths. Uncertainties in trends over the 1901–2010 period
are therefore most likely to arise from uncertainties in the
influence of land station sensor exposure biases in the early
20th century, before the introduction of Stevenson screens,
uncertainties in the impact of urbanization on regional tem-
perature averages and uncertainties in bias adjustment for
each type of measurement platform in the slowly changing
SST measurement network. The similarity between trends in
the four data sets over this period indicates that, although the
different analyses produce differing representations of tem-
perature in individual years, the observed trends are robust
to the choice of data set over timescales of about a century.
[79] Uncertainties in short-term trends from 1979 to 2010

are larger than in the 1901 to 2010 trends. The influence of
land station homogenization and the contribution of SST
micro-biases toward measurement uncertainty in SSTs are
likely to be more important over this shorter time scale,
particularly in the southern hemisphere, where fewer inde-
pendent measurements are used to compute time series than
for global and northern hemisphere series. Differences in
trends in each temperature data set are larger for 1979 to
2010 than for 1901 to 2010 for all series. This may be related
to the different observational coverage and methods used to
represent temperatures in unobserved regions in each data
set. In the northern hemisphere and global series, the dif-
ferences in trends are greatest, which is likely to be related to
different coverage of the Arctic, a region in which temper-
ature change is believed to be more rapid than the global
average [Bekryaev et al., 2010]. The cause of differences
between JMA trends and trends in other data sets in this time
period may be related to the reduced spatial coverage of the
JMA data set over land in comparison to the other data sets
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Figure 8. Average HadCRUT4 temperature anomaly time series 1850–2010 (�C, relative to the long-
term average for 1961–90) for the northern hemisphere. (first and second plots) Monthly time series
and components of uncertainty in monthly averages. (third and fourth plots) Annual time series and com-
ponents of uncertainty in annual series. (fifth and six plots) Decadally smoothed series and components of
uncertainty in the decadally smoothed series.
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Figure 9. Average HadCRUT4 temperature anomaly time series 1850–2010 (�C, relative to the long-
term average for 1961–90) for the southern hemisphere. (first and second plots) Monthly time series
and components of uncertainty in monthly averages. (third and fourth plots) Annual time series and com-
ponents of uncertainty in annual series. (fifth and sixth plots) Decadally smoothed series and components
of uncertainty in the decadally smoothed series.
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Figure 10. Average HadCRUT4 temperature anomaly time series 1850–2010 (�C, relative to the long-
term average for 1961–90) for the tropics (30�S to 30�N). (first and second plots) Monthly time series
and components of uncertainty in monthly averages. (third and fourth plots) Annual time series and com-
ponents of uncertainty in annual series. (fifth and sixth plots) Decadally smoothed series and components
of uncertainty in the decadally smoothed series.
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and the use of optimal interpolation in the SST portion of the
JMA data set, a method that is known to suppress tempera-
ture anomalies and so underestimate climate change [Hurrell
and Trenberth, 1999].
[80] To remove the influence of different global coverage

from the series, Figure 12 shows time series for each of the
four observational data sets with observational coverage
reduced to the minimum coverage that exists in all four data
sets (co-locating). Additionally, to remove the influence of
differing time series calculation methodologies, each series
is computed using the methods described in section 5. Co-
locating the data sets has a most prominent affect on the GISS
series, indicating that a large proportion of the difference

between GISS and the other data sets results from differences
in measurement coverage and the extrapolation of data
into unobserved regions in the GISS data set. The reduction
of measurement coverage has the most profound influence
on 1979 to 2010 trends in the GISS data set in the northern
hemisphere. In each data set, trends over the 1901 to 2010
period are largely in agreement. In trends for 1979 to 2010
there is less agreement between data sets. Although co-
location reduces the spread in linear trends in the 1979 to 2010
period, JMA trends in the 1979 to 2010 period remain sup-
pressed in comparison to other data sets over this time period,
and lie outside of the uncertainty range of HadCRUT4. This

Figure 11. Annual temperature anomaly development in the HadCRUT4, GISS, NCDC and JMA sur-
face temperature analyses. Least squares linear trends are shown on the right for the periods of 1901to
2010 and of 1979 to 2010. Individual ensemble member realizations of HadCRUT4 are shown in gray.
Uncertainty ranges in linear trends for HadCRUT4 data are computed as the 2.5% and 97.5% ranges in
linear trends observed in the HadCRUT4 ensemble.
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implies that trend differences can result from differences in
data set construction methodologies.

8. Conclusions

[81] The updated analysis has refined, but not significantly
altered, our understanding of the evolution of the climate
since 1850. The inclusion of new bias adjustments for
marine data has resulted in warmer temperatures in the mid
20th century in comparison to previous studies of historical
temperature observations. The inclusion of new land station
data at high latitudes and the inclusion of improved SST bias

adjustments have resulted in a warming of years in the late
20th century/early 21st century.
[82] Studies of uncertainties in near-surface temperature

measurements have identified correlation structures in mea-
surement uncertainties that translate into correlated uncer-
tainties in derived data sets. Because an ensemble of
HadCRUT4 data sets has been constructed based upon
analysis of correlation structures in uncertainties, it is pos-
sible to assess the sensitivity of scientific analyses to these
uncertainties by applying the analysis to each individual
ensemble member. This kind of analysis has not previously
been possible for global surface temperature data sets
because spatially and temporally correlated uncertainties

Figure 12. Annual temperature anomaly development in the HadCRUT4, GISS, NCDC and JMA
surface temperature analyses, with data set coverage reduced to the minimum coverage existing in all four
data sets. Least squares linear trends are shown on the right for the periods of 1901 to 2010 and of 1979 to
2010. Individual ensemble member realizations of HadCRUT4 are shown in gray. Uncertainty ranges in
HadCRUT4 data are computed as the 2.5% and 97.5% ranges in linear trends observed the HadCRUT4
ensemble.
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were not well enough defined and uncertainties in gridded
data were not expressed in a manner that allowed the
description of uncertainties with complex interdependencies.
[83] The ensemble technique allows scientific analyses

based on HadCRUT4 to explicitly explore sensitivities to
observational uncertainties that have a complex spatial cor-
relation structures and low frequency biases. The Fourth
Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC) [2007, chapter 9] recognized the
need to assess the influence of systematic observational error
on climate change detection, noting that few detection studies
have explicitly considered the influence of observation
uncertainties and that these uncertainties may be important
for the detection of temperature changes averaged over small
regions. Since this assessment, further study of observation
biases in SST measurements [Kennedy et al., 2011a, 2011b]
has made the need to assess sensitivity to these biases all the
more necessary. To this date, there remain few detection
studies that consider observational uncertainty, but examples
are that of Hegerl et al. [2001] and a recent study into
detection and attribution sensitivities to the choice of near-
surface temperature set used [Jones and Stott, 2011].
Through use of ensemble data sets, more detailed studies of
the sensitivity of climate change detection and attribution
studies to observational uncertainty should be possible.
[84] Improvements to the characterization of uncertainties

in the land portion of the HadCRUT4 data set would be
greatly assisted by greater access to station metadata, full
knowledge of applied homogenization methods or access to
uncorrected station records. With access to uncorrected sta-
tion records and metadata describing station histories,
Menne et al. [2009] found a higher average occurrence rate
of step changes in U.S. station records than is represented by
the global parameter value used in this study. Additional
research at a regional level, with supporting station meta-
data, would allow the assessment of whether these results are
indicative of station record characteristics in other regions,
providing more information on which to base choices of
uncertainty model structure and parameters. At present,
sufficient metadata are not available and studies over small
regions are too few for uncertainties in land station homog-
enization, urbanization and exposure biases to be adequately
described on an individual grid box level. In a similar fash-
ion, the characterization of spatial and temporal correlations
in SSTs is limited by missing ship call-sign information
prior to 1981. Without this information, the SST uncertain-
ties cannot be constructed in a manner that fully represents
the relationships between intraplatform micro-biases in
gridded SST observations. Instead, uncertainty scaling
parameters are derived to accommodate spatial correlations
in regional averages in periods in which there are insufficient
metadata to produce complete measurement and sampling
covariance matrices. Further digitization efforts are needed
to rescue relevant information.
[85] The effect of limited observational coverage remains

uncertain, particularly with regard to the role of Arctic
amplification and the capability to sample any potentially
large variability in polar temperatures with available mea-
surements. The additional high latitude temperature series
sourced for CRUTEM4 have allowed improved coverage in
historical land data. However, future monthly data set
updates will have reduced coverage because updates to these

station records will not be available in near real time. This
will result in a reduced capability to monitor polar tem-
peratures, and a possible cool bias in northern hemisphere
temperatures, until updates to these series become available.
[86] The assessment of uncertainties in HadCRUT4 is

based upon the assessment of uncertainties in the choice of
parameters used in forming the data set, such as the scale of
random measurement errors or uncertainties in large-scale
bias adjustments applied to measurements. This model can-
not take into account structural uncertainties arising from
fundamental choices made in constructing the data set.
These choices are many and varied, including: data quality
control methods; methods of homogenization of measure-
ment data; the choice of whether or not to use in situ mea-
surements or to include satellite based measurements; the
use of sea-surface temperature anomalies as a proxy for
near-surface air temperature anomalies over water; choices
of whether to interpolate data into data sparse regions of the
world; or the exclusion of any as yet unidentified processing
steps that may improve the measurement record. That the
reduction of the four data sets compared in section 7.4 to the
same observational coverage does not resolve discrepancies
between time series and linear trends is evidence that choices
in analysis techniques result in small but appreciable dif-
ferences in derived analyses of surface temperature devel-
opment, particularly over short time scales. As these
differences are not captured by the HadCRUT4 uncertainty
model, it is important that multiple temperature data sets are
maintained so that the sensitivity of studies based on his-
torical temperature records to data set construction method-
ologies can be explored. This requirement is recognized in
the upper air observation community (“No matter how
august the responsible research ground, one version of a
datasets cannot give a measure of the structural uncertainty
inherent in the information” [Thorne et al., 2011]) and
applies no less to near-surface temperature records.
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