The Suess Effect: 13Carbon-14Carbon Interrelations

Charles D. Keeling
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, U.S.A.

The Suess Effect is a term which has come to signify the decrease in 14C in atmospheric CO$_2$ owing to admixture of CO$_2$ produced by the combustion of fossil fuels. This term is here extended, as a concept, to the shifts in isotopic ratio of both 13C and 14C in any reservoir of the carbon cycle owing to anthropogenic activities. To explain this generalized Suess Effect a four reservoir global model of the natural carbon cycle is developed in which isotopic fractionation and radioactive decay are fully taken into account. The model includes the cases in which the deep ocean is treated either as a single undifferentiated box model reservoir or is vertically differentiated with eddy diffusion governing the transport of carbon. Also, the governing equations are expressed with sufficient generality to apply simultaneously to both rare isotopes. In so far as possible, the model is expressed without approximation of the isotopic processes even though this leads to non-linear differential equations to describe the rates of change of rare isotopic carbon within carbon reservoirs. Linear approximations are also developed and solved using the method of Laplace transforms. The sensitivity of the predicted Suess Effects to uncertainties in the assigned values of the model parameters is investigated in detail, including estimates of some of the effects of linearizing the governing equations.

The approximation of Stuiver, in which the atmospheric Suess Effect is assumed to be 0.018 times the corresponding effect for 24C, is examined in detail and shown to arise when both isotopic fractionation and radioactive decay are left out of the model. This approximation, although correct as to order of magnitude, is found to be too imprecise to be recommended in modeling studies.

As found in previous work, the predicted atmospheric Suess Effect for 13C for a given airborne fraction of industrial CO$_2$ is of similar magnitude whether the land biosphere has been a net source or sink of carbon during recent times. On the other hand, the corresponding effect for a surface ocean water is considerably smaller than otherwise if the land biosphere has been a source of CO$_2$ instead of a sink. The model is thus useful in indicating the need to consider isotopes in several reservoirs simultaneously.

Although the emphasis is on formulating models rather than surveying and interpreting data, observational data are summarized and compared with model predictions. The oceanic data are seen to be too meager as yet to help settle the question of biospheric responses to man’s activities.

List of symbols

The numbers in parentheses refer to the first equation in which the symbol appears. Symbols in parentheses denote steady state values. Symbols for chemical elements (e.g., C or Ca) are not listed.

The following algebraic symbols are used:

- A_i, average area of oceanic reservoir i (8.50)
- $A(z)$, area of oceans at depth z (8.49)
- a_C, subscript for atmospheric reservoir
- a_{Ca}, chemical activity of subscripted chemical species (10.49)
- b, subscript for land biospheric reservoir or for an unspecified reservoir in contact with the atmosphere (2.4)
- C_i, abundance of calcium, or carbon and magnesium, in reservoir i (10.3)
- c, subscript for calcium or biogenic carbonate (10.15)
- d, operator for differentiation
- d_{0}, subscript for subsurface ("deep") ocean reservoir (8.1)
- e, natural logarithm base (2.10)
- $F_i (F_0)$, flux of carbon-total emerging from an unspecified reservoir (4.1)
- $F_{ij} (F_{ij0})$, flux of carbon-total from reservoir i to j (3.2)
- $F_{ci} (F_{cij})$, same for calcium from oceanic reservoir i to j (10.15)
- $*F_{ij} (F_{ij0})$, same for 13C or 14C (3.4)
- $F_{cg} (F_{cg0})$, oceanic gravitational flux of carbon-total (8.1)
- $F_{pg} (F_{pgo})$, same for carbon-total in the form of particulate organic carbon (10.15)
\(f_i \) general function with derivations, \(f', f'', f''' \ldots \) (4.1)
\(g_i \) subscript for oceanic gravitational flux (8.1)
\(h_{ip} \) depth of ocean water containing the same amount of inorganic carbon-total as the atmosphere in preindustrial times (11.3)
\(i \) general subscript (1.1)
\(J(z,t) \) rate of regeneration of inorganic carbonate-total from particulate organic carbon and biogenic carbonate at depth \(z \) in subsurface ocean water per unit volume at time \(t \) (8.49)
\(j_i \) second general subscript (1.6)
\(k_i \) steady state transfer coefficient for carbon-total for the flux emerging from an unspecified reservoir (4.5)
\(k_{ij} \) steady state transfer coefficient for carbon-total from reservoir \(i \) to \(j \) (2.4)
\(k_{ip} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (6.19)
\(k'_i \) (\(i = 1 \) to 6) virtual source coefficient for reservoir \(i \) (6.19)
\(k_{ij} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (6.2)
\(K' \) oceanic vertical eddy diffusion coefficient (8.51)
\(K_{CaCO_3} \) same for solid \(\text{CaCO}_3 \), respectively (7.11-13)
\(K_{MgCO_3} \) solubility product for calcium carbonate in sea water (10.49,50)
\(K_{sp} \) same for \(\text{CaCO}_3 \) in a solid solution of calcium-magnesium carbonate (10.2)
\(K_{spC} \) same for \(\text{MgCO}_3 \) in a solid solution of calcium-magnesium carbonate (10.51)
\(K_{spM} \) solubility product for magnesium carbonate (10.48)
\(m \) subscript for oceanic surface ("mixed") layer (1.18)
\(N_i(0) \) abundance of carbon-total in an unspecified reservoir (4.1)
\(N_{i_0}(0) \) abundance of carbon-total in reservoir \(i \) (1.1)
\(N_{i_0}(t) \) value of \(n_i \) at time \(t = 0 \) assuming an exponential rate of increase in \(n_i \) (not a steady state value) (2.19)
\(n_i \) column vector of \(n_i \) and \(*n_i \) (9.12)
\(n_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (1.1)
\(n_i(0) \) column vector of \(n_i(0) \) and \(*n_i(0) \) (9.17)
\(N_{i_0} \) value of \(N_i \) at its initial value \(N_{i_0} \) (1.9)
\(N_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (1.1)
\(N_{i_0}(t) \) value of \(n_i(0) \) at time \(t = 0 \) assuming an exponential rate of increase in \(n_i \) (not a steady state value) (2.19)
\(n_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (2.30)
\(o_i \) subscript for preindustrial steady state (1.7)
\(P_{CO_2} \) partial pressure of \(\text{CO}_2 \) (7.13)
\(P_s(\rho_0) \) partial pressure of \(\text{CO}_2 \) in reservoir \(i \) (7.3)
\(P_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (7.26)
\(q(z,t) \) special column vector (9.21)
\(R_i \) concentration of carbon-total at depth \(z \) in the oceans at time \(t \) (8.51)
\(R_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (11.27)
\(R_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (11.1)
\(R_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (11.12)
\(R_i \) standard \(^{13}\text{C}/^{12}\text{C} \) or \(^{14}\text{C}/^{12}\text{C} \) ratio of an unspecified chemical (11.24)
\(R_{i_0} \) same for \(^{13}\text{C} \) or \(^{14}\text{C} \) (11.27)
\(R_{i_0} \) standard \(^{13}\text{C}/^{12}\text{C} \) or \(^{14}\text{C}/^{12}\text{C} \) ratio of theoretical Suess Effect of reservoir \(i \) (1.7)
\(R_{i_0} \) observed Suess Effect of reservoir \(i \) at time \(t_i \) (1.6)
\(R_{i_0} \) Laplace transform frequency (2.9)
\(\alpha_{ij} \) isotopic fractionation factor for transfer of carbon from reservoir \(i \) to \(j \) (6.08)
\(\alpha_{ij} \) isotopic fractionation factor for transfer of \(\text{CO}_2 \) gas from reservoir \(i \) to \(j \) (2.30)
\(\alpha_{eq} \) equilibrium isotopic fractionation factor for transfer of carbon from reservoir (or phase) \(i \) to \(j \) (7.29)
\(\beta_{ij} \) perturbation factor relating a change in emerging flux to a change in carbon abundance for an unspecified reservoir (4.4)
\(\beta_g \) factor for perturbation of the oceanic gravitational flux

\(\beta_b \) perturbation factor for the dependence of the rate of transfer of carbon out of reservoir \(i \) on the change in abundance of carbon-total in reservoir \(i \)

\(\beta'_b \) same except related to a change in abundance of carbon-total in the reservoir to which carbon is being transferred

\(\beta_{m} \) factor for perturbation in flux from surface to deep ocean associated with the oceanic gravitational flux

\(\beta_{mo} \) value of \(\beta_m \) if gravitational flux is constant \((\beta_g = 0)\). (Factor is equal to ratio of concentration of carbon-total in surface ocean to that in deep ocean.)

\(\beta_{ci} \beta_{cij} \) carbonate perturbation factors for oceanic reservoir \(i \) corresponding to \(\beta_b \) and \(\beta_{ij} \)

\(\beta_{pi} \beta_{pij} \) same for particulate organic carbon

\(\beta_{gi} \) terms in the Taylor’s expansion of \(\beta_g \) \((j = 0, 1, 2, \ldots)\)

\(\beta_{ij} \) terms in the Taylor’s expansion of \(\beta_b \) where the perturbation depends on the abundance of the donor reservoir \(i \) only \((j = 0, 1, 2, \ldots)\)

\(\beta_{ijk} \beta_{ijk'} \) terms in the Taylor’s expansion of \(\beta_b \), respectively \(\beta'_b \), where the perturbation depends on the abundances of both the donor reservoir and the receiver reservoir. (The first term is designated \(\beta_{ij0} \), respectively \(\beta'_{ij0} \). For the higher terms \(j \) and \(k \) take on values \(1, 2, 3, \ldots \))

\(\gamma_i \) subscript to \(R \), an external source for the specified reservoir (e.g. \(R_{i\alpha} \) denotes isotopic ratio of industrial \(CO_2 \) entering the atmosphere)

\(\gamma_i \) column vector of \(\gamma_i \) and \(*\gamma_i / R_{i\alpha} \)

\(\gamma_i \) column vector of \(\gamma_{io} \) and \(*\gamma_{io} / R_{i\alpha} \)

\(\gamma_{i0} \) combined external sources of carbon-total to reservoir \(i \)

\(*\gamma_{i} \) rate of production of industrial \(CO_2 \) in units of carbon-total

\(\gamma_{f} \) value of \(\gamma_f \) at time \(t = 0 \), assuming an exponential rate of increase in \(\gamma_f \)

\(*\gamma_{i0} \) steady state (or average) rate of production of rare isotopic carbon by cosmic rays (zero for \(13C \))

\(\Delta_i \) change from preindustrial value for quantity preceded by \(\Delta \)

\(\delta C_i \) relative variation in \(13C \) or \(14C \) ratio from a standard value

\(13\delta C_i \) same specifically for \(13C \)

\(14\delta C_i \) same specifically for \(14C \)

\(\delta C_{ij} \) same for reservoir \(i \) at time \(t_j \)

\(\delta^{13}C_{b} \) \((\delta^{13}C_{io})\) same for \(13C \) in reservoir \(i \)

\(e_{fi} \) relative variation in \(13C/C \) or \(14C/C \) ratio of industrial \(CO_2 \) from that of preindustrial carbon in reservoir \(i \)

\(\xi_{ij} \) carbonate perturbation factor for reservoir \(i \)

\(\eta_i \) rate of dissolution of solid calcium carbonate in (oceanic) reservoir \(i \) in same units as \(\gamma_f \)

\(\theta_{pi} \) relative fraction of change in abundance of carbon-total in reservoir \(i \) owing to external sources (the remainder being due to carbonate dissolution)

\(\varepsilon \) CO2 evasion factor for carbon-total

\(*\Lambda_{\alpha} \) special function of \(*\lambda \)

\(\mu, \nu \) reciprocal of e-fold time for exponentially rising industrial \(CO_2 \) production

\(\Sigma_i \) total concentration of inorganic carbon-total dissolved in sea water

\(\phi_{ij} \) perturbation function for transfer of carbon from reservoir \(i \) to another reservoir when the perturbation depends only on the abundance of carbon-total in the donor reservoir

\(\phi_{f} \) same except that the perturbation depends on abundances in both donor reservoir \(i \) and receiving reservoir \(j \)

\(\phi_{m} \) perturbation function for \(CO_2 \) evasion from surface ocean, defined as a function of thermodynamic quotients, \(K_1 \) and \(K_2 \), and the hydrogen ion concentration, \([H^+] \)

The following special symbols are used:

left superscript, indicates that the...
main symbol refers to a rare isotope of carbon, either ^{13}C or ^{14}C.

left superscript, indicates that main symbol refers to ^{13}C, respectively ^{14}C.

over main symbol, Laplace transform defined by equation (2.10)

over main symbol, average over coordinate specified in parentheses after main symbol

enclosing an algebraic symbol, a column vector (symbols used are \bar{r}, γ_i, γ_j, γ_{ij}, γ_{ij}, r_i, r_j, r_{ij}) or square matrix (symbols used are k_{ij}, k_{ij}, k_{ij})

enclosing a chemical symbol, such as H^+ or HCO_3^-) the concentration of the specified chemical species in sea water

operator for partial differentiation

operator for integration

infinity as a limit of integration

Bold type for main symbol, indicates that the main symbol is a column vector or a square matrix

Introduction

Atmospheric carbon dioxide (CO_2) contains two rare carbon isotopes having atomic masses of 13 and 14. Their abundances relative to the dominant isotope of mass 12 have declined in recent years owing to dilution with CO_2 depleted in both rare isotopes. A clearly documented component of this dilution is industrial CO_2 added to the air as a by-product of the combustion of fossil fuels. This CO_2 on average contains approximately 2% less ^{13}C per mole than atmospheric CO_2 and is virtually free of ^{14}C.

A second less well defined component of the recent dilution of atmospheric CO_2 stems from the large scale harvesting of timber and the clearing of forests and grasslands for agriculture. These activities have removed carbon not only from the terrestrial biota, i.e. the living organic material on land, but also from soils. The total amount of carbon removed, most of which is released to the air as CO_2, is believed by some investigators to approach in magnitude the CO_2 produced from fossil fuels.

The rate of production of industrial CO_2 during most of the industrial era is known to fair accuracy from historical data on fossil fuels. In addition, since A.D. 1956, direct measurements of atmospheric CO_2 establish that the concentration of CO_2 in air is rising at close to 50% of the rate of production.

This implies that somewhere there exists a sink for atmospheric CO_2 which is accepting the remaining industrial CO_2 and whatever additional CO_2 is being released from the terrestrial biota and soils. The oceans account, beyond doubt, for part of the uptake, but it is far from certain that they have taken up all of the industrial CO_2 not remaining airborne. There is presently no direct evidence at all that they have taken up additional CO_2 from the land biota and soils. Indeed, studies of chemical tracers suggest that the oceans are so limited in their ability to absorb atmospheric components that the land biota must be responding to increasing atmospheric CO_2 and therefore with respect to the air is acting more as a sink than as a source of CO_2. This view is, however, not in good agreement with the expected behavior of terrestrial plants whose growth is generally limited by other environmental factors (Goudriaan, 79).

It is clear that either the oceans or the land biosphere are in truth accepting more CO_2 than is currently believed possible. Unfortunately, existing direct measurements of carbon abundances are not accurate enough to detect possible changes which have occurred either in the ocean or in the biota and soils, and therefore the question as to which reservoir is being improperly assessed is not readily resolved.

Isotopic studies have been proposed as an indirect means of establishing where the “missing” CO_2 has gone, but whether ^{13}C and ^{14}C are actually useful tracers of the redistribution of industrial and biospheric CO_2 is not obvious either by examining existing isotopic data or from a consideration of published theoretical models of the carbon cycle.

It is the purpose of this article to make clearer than hitherto the advantages and shortcomings of these rare isotopes as tracers of industrial CO_2. The approach will be to predict, by means of generalized geochemical models, the expected shifts in isotopic ratio as CO_2 from fossil fuel, or from plant communities disturbed by man, is redistributed throughout the carbon cycle.

Carbon-13 is stable. Its depletion in industrial CO_2 is solely a result of isotopic fractionation. Most of this fractionation occurred long ago when the carbon was first removed from the atmosphere and incorporated by photosynthesis in marine and terrestrial plants, precursors of present day coal, petroleum, and natural gas. Subsequent diagenetic transformations to produce these fuels reduced the ^{13}C abundance still further, especially in the case of natural gas. Very little further fractionation occurs during fuel consumption, since the carbon of fossil fuels is almost completely converted to CO_2 by combustion (Keeling, 73a).

Carbon-14 is radioactive with a decay constant of about 1/8000 yr$^{-1}$ (Olsson, 70). Long storage of fossil fuels in underground reservoir has caused the ^{14}C originally present to disintegrate radioactively to form ^{14}N, so that the carbon in these fuels contain only the stable isotopes.

Within all of the natural carbon reservoirs which exchange carbon with the atmosphere, the injection of industrial CO_2 into the air has reduced ^{13}C and ^{14}C ratios relative to the abundance isotope ^{12}C, and to the sum of isotopes which I will call carbon-total (C). Especially affected are the ^{13}C to carbon-total ($^{13}\text{C}/\text{C}$) and ^{14}C to carbon-total ($^{14}\text{C}/\text{C}$) ratios of the pools in closest contact with the atmosphere: the inorganic carbon pool of the oceans and the organic carbon pool of the terrestrial biota and soils, which I will collectively call the land biosphere.
One might expect that the usefulness of 13C and 14C as tracers would be enhanced when both are measured. This is because the processes by which 13C/12C ratios have changed in response to industrial CO$_2$ production are known to be distinctly different from those which have changed 14C/12C ratios. With respect to 14C, its total absence in fossil fuel is the major cause of depletion in the atmosphere and other carbon pools. The size of these carbon pools and the rates at which they exchange carbon-total are, therefore, the dominant factors which affect 14C/12C variations. Of the pools that readily exchange carbon with the atmosphere, the oceanic is the largest. It follows that the magnitude of the shift in 14C/12C ratio in all pools depends, in the main, on the rate of oceanic uptake and release of carbon and on the extent to which the large oceanic carbon pool in deep ocean water mixes with the lesser pool in surface water. Conversely, 14C/12C ratios in all pools are insensitive to properties of the land biosphere.

With respect to 13C, isotopic fractionation during the redistribution of fossil fuel carbon from the air to other carbon pools is similar in magnitude to the original fractionation during formation of fossil fuel. Indeed, because fossil fuel was once plant carbon, industrial CO$_2$ has nearly the same average 13C/12C ratio as the carbon of living land plants. The 13C/12C shift caused by biospheric transfer to the atmosphere therefore has nearly the same isotopic impact as a corresponding injection of industrial CO$_2$. Although the size of the biospheric pool is relatively unimportant for 13C for the same reason that it was unimportant for 14C (namely that it is overshadowed by the oceanic pool), nevertheless, in contrast to 14C, 13C/12C ratios are strongly influenced by changes in the size of the biospheric pool. This sensitivity to changing pool size is irrespective of whether the changes are natural or caused by human activities.

Such different isotopic tendencies guarantee that the simultaneous use of 13C and 14C will tell us more about the global response of the carbon cycle to industrial CO$_2$ than either isotope alone. The advantage of two rare isotopes is lessened, however, because 13C and 14C ratios have only been measured for a few decades and because man-made, "bomb" 14C from nuclear weapons testing obliterated the industrial 14C effect after 1954.

Global average ratios for earlier times must be inferred from historic materials such as tree rings, vintage whiskies, coral rings and varved sediments. The overriding of global trends by local effects, a problem which probably can be overcome for 14C (Cain, 76), is more likely to confound 13C measurements, since the abundance of this isotope in natural materials is significantly affected by almost any extraneous isotopic fractionation process which occurs in the local environment of the plant. Thus 13C is not ideal but the preferred isotope for studying past industrial activity. Nevertheless, 13C is the only choice for recent times.

An isotopic effect attributed to industrial CO$_2$, was, in fact, first observed with respect to historical variations in 14C/12C ratios. In A.D. 1953, Dr. Hans Suess, working for the U.S. Geological Survey, following a suggestion of G.E. Hutchinson (Hutchinson, 54; p. 590), investigated variations in the 14C content of wood of known age. Suess detected a 3.4% decrease in 14C ratio of wood carbon during the preceding 50 yr for two trees from the eastern United States (Suess, 53). A tree from Alaska showed about half as much decrease. All ratios were corrected for radioactive decay back to the time of growth of the wood. Two years later Suess proposed that the decrease, and similar decreases which he found for several additional trees, were due to industrial coal production causing a decrease in the 14C/12C of atmospheric CO$_2$ which in turn caused proportional decrease in the carbon incorporated tree rings (Suess, 55). The isotopic decreases in trees of the eastern United States could be due to local industrial effects, but decreases in trees of remote areas such as Alaska suggested a global effect. After discounting local effects for each tree, he estimated the global effect to be 1% or less.

In A.D. 1957 Suess revised his opinion on the strength of the effect. In collaboration with Dr. Roger Revelle of the Scripps Institution of Oceanography he compared his tree ring data with 14C/12C ratios in ocean water as a basis for determining how much industrial CO$_2$ had been absorbed by the oceans during the period of 14C observation (Revelle, 57b). From the oceanic data he and Revelle predicted a global reduction in the 14C of atmospheric CO$_2$ of about 1.7%. This value was not inconsistent with the tree ring data, and appears to be more reasonable than his previous estimate of about 1%. A 1.7% decrease was, however, still far less than the 10% decrease to be expected if all of the industrial CO$_2$ had remained in the atmosphere in isolation from other carbon reservoirs. After considering the mechanism of CO$_2$ exchange between the atmosphere and the oceans, including the influence of carbonate ion in sea water, Revelle and Suess concluded that a considerable part of the CO$_2$ from combustion was exchanging with the carbon of sea water with between 40 and 70% being retained in the oceans. They declined to estimate the possible atmospheric increase because they lacked information on biospheric changes.

Their conclusions regarding oceanic uptake of CO$_2$ were in contrast to the opinion of Callendar (38) that neither the oceans nor the biosphere had strongly modified the direct effect of industrial CO$_2$ on the atmosphere. Callendar's conclusion, generally accepted at that time, soon appeared to be reinforced by new atmospheric CO$_2$ measurements over Scandinavia carried out in connection with the International Geophysical Year. These data indicated an increase in CO$_2$ nearly equal to the industrial CO$_2$ input (Fonselius, 56; Callendar, 58). But in the next decade, additional new data from Hawaii and Antarctica established a considerably slower rate of rise in atmospheric CO$_2$ and revived an interest in the role of the oceans in removing substantial amounts of industrial CO$_2$ from the atmosphere (Bolin, 63; Pales, 65; Brown, 65). Suess and Revelle had, in effect, anticipated this result and thus had demonstrated how indirect isotopic measurements could yield insight into processes governing the redistribution of industrial CO$_2$.

From Suess's 14C data it soon became evident that a correct interpretation of 14C/12C ratios for archeological and geochemical dating required that the industrial CO$_2$ effect be properly allowed for in calibrating ancient
samples against modern materials. Suess's discovery received wide scientific attention and was soon referred to as the "Suess Effect". The term appeared shortly after in the scientific literature (Hayes, 56; Bolin, 59) and has been referred to widely since that time.

Extensive further measurements by Suess and his coworkers, and by others who have joined in these studies over the past two decades, confirm the existence of the Suess Effect. The data obtained from tree rings, oceanic materials, and direct measurements are summarized in Table 1. They indicate that the decrease in 14C/12C from the middle of the nineteenth century to the early 1950s is close to the 1.7% estimate of Suess and Revelle. The data, in aggregate, however, are not consistent enough to establish an accurate global value. Local effects, such as local combustion of fossil fuels, have evidently influenced many of the reported measurements. Although Suess from the beginning of his studies was aware of the possibility of local effects, investigators regrettably have usually not furnished enough documentation to assess the magnitude of local interferences.

Table 1. The observed Suess Effect for 13C and 14C

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Date of most recent material measured</th>
<th>Corrected for 13C?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric 14C Suess Effect inferred from tree rings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suess (1953, p. 55)</td>
<td>-3.4</td>
<td>1953</td>
</tr>
<tr>
<td>Suess (1955, p. 416)</td>
<td>-1.6</td>
<td>1953</td>
</tr>
<tr>
<td>Suess (1956, p. 191)</td>
<td>-1.6</td>
<td>1953</td>
</tr>
<tr>
<td>Hayes et al. (1957, p. 646)</td>
<td>-3.6</td>
<td>1955</td>
</tr>
<tr>
<td>Brannon et al. (1957, p. 646)</td>
<td>-1.7</td>
<td>1955</td>
</tr>
<tr>
<td>Fergusson (1958, p. 564)</td>
<td>-1.88</td>
<td>1953</td>
</tr>
<tr>
<td>Münch and Vogel (1958, p. 6)</td>
<td>-2.34</td>
<td>1953</td>
</tr>
<tr>
<td>de Vries (1958, p. 96)</td>
<td>-1.5</td>
<td>1935</td>
</tr>
<tr>
<td>Broecker and Walton (1959b, p. 311)</td>
<td>-3.2</td>
<td>1938</td>
</tr>
<tr>
<td>Suess (1965, p. 5941)</td>
<td>-2.4</td>
<td>1942</td>
</tr>
<tr>
<td>Houtermans et al. (1967, p. 58)</td>
<td>-2.3</td>
<td>1948</td>
</tr>
<tr>
<td>Lerman et al. (1970, p. 287)</td>
<td>-2.34</td>
<td>1951</td>
</tr>
<tr>
<td>Damon et al. (1973, p. 303)</td>
<td>-2.62</td>
<td>1947</td>
</tr>
<tr>
<td>Tan (1978, p. 86)</td>
<td>-1.64</td>
<td>1950</td>
</tr>
<tr>
<td>Surface oceanic 14C Suess Effect inferred from biogenic carbonates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brannon et al. (1957, p. 647)</td>
<td>-2.1</td>
<td>1950</td>
</tr>
<tr>
<td>Broecker (1963, p. 140)</td>
<td>-3.2</td>
<td>1938</td>
</tr>
<tr>
<td>Nozaki et al. (1978, p. 826)</td>
<td>-2.2</td>
<td>1950</td>
</tr>
<tr>
<td>Druffel and Linick (1978, p. 915)</td>
<td>-1.1</td>
<td>1952</td>
</tr>
<tr>
<td>Atmospheric shift in 13C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keeling et al. (1979, p. 122)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface oceanic shift in 13C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A notable exception, however, is the study of William Cain, a student of Suess, who deliberately investigated the relative importance of local and global effects of industrial 12CO$_2$ on 14C of tree rings (Cain, 76). Cain adopted the painstaking approach of measuring all possible individual rings (except perhaps the earliest which are locally affected by the low height of the tree) to obtain a complete time series for each tree. By carefully checking several series of rings for internal consistency, Cain discerned subtle interferences which, if he had not detected them, would have invalidated the use of these records to detect global changes in 14C/12C. Most notably he found that "bomb" 14C had influenced the 14C/12C or rings laid down as early as 1915 by its incorporation at the time of conversion from sapwood to heartwood. Cain did not attempt to establish the global Suess Effect accurately, but he demonstrated clearly that to do so will involve a large effort: complete series from a considerable number of trees are needed to be certain that local effects have been allowed for.

Very recently new data have been obtained by Stuiver and Quay (79) which suggest that sampling and experimental problems which have before hampered establishing of the global Suess Effect can be substantially reduced by adhering to very careful procedures. Stuiver's data indicate that the 14C/12C ratio of atmospheric 12CO$_2$ from 1850 to 1952 decreased by -2.4% (Stuiver, private communication). But so far Stuiver has described measurements of only one or two trees for any given time period. More trees from a variety of sites will be needed to establish that tree ring data unequivocally reflect the atmospheric Suess Effect.
industrial CO₂ influence on ¹⁴C ratios. Variations in ratio of the order of 2‰ per century have been found in tree ring records as far back as ring counting extends: some 7000 years (Suess, 65; 70; Damon, 70; Eddy, 77; Damon, 78; Stuiver, 79). As suggested by Stuiver (65), these variations are likely to be due to variations in solar activity which in turn affects ¹⁴C production. To test for this possibility an index of solar activity is needed, such as sunspot numbers. Suess and coworkers, however, found about 10 years ago that the direct statistical correlation of this existing ¹⁴C/C data with sunspots was too poor to be a good predictor (Houtermans, 67).

Closely spaced and highly accurate tree rings analyses and more reliable sunspot data obtained recently by Stuiver and Quay (79) yield a better correlation between ¹⁴C/C ratios and sunspots. If a causal connection exists, as seems likely from these new data, the correlation should be improved by giving careful attention to known aspects of the carbon cycle which may modify the correlation in predictable ways. This approach has not yet been very successful, however. Grey (69) and Grey and Damon (70) employed a one reservoir model which was clearly too simplistic, while Bacastow and Keeling (73), although they used an elaborate six-reservoir model, inadequately represented the ¹⁴C production variation with sunspots and obtained almost no correlation at all.

It seems likely that the ¹⁴C Suess Effect will continue to receive attention as new studies improve the data base. Recent suggestions that CO₂ from the land biosphere may actually exceed fossil fuel as a source of CO₂ to the atmosphere (Woodwell, 78; Stuiver, 78; Wilson, 78) also have stimulated new interest in the Suess Effect, because, if the Suess Effect were accurately known, it would establish within fairly narrow limits the capacity of the oceans to absorb industrial CO₂, and hence, by difference, the change in biospheric carbon.

Possible variations in ¹³C related to industrial CO₂, have until recently not received the widespread interest accorded ¹⁴C. In the past few years however a considerable body of data on tree rings has appeared (Freyer, 73, 74, 78a, 78b; Pearman, 76; Fraser, 78; Tans, 78; Wagener, 78; Wilson, 78), and one study of coral (Nozaki, 78). Also the isotopic shift in the atmosphere between A.D. 1956 and 1978 has very recently been reported from direct measurements (Keeling, 79a).

The tree ring data scatter badly, and for recent years do not agree very closely with the direct atmosphere observations. Until the causes of the scatter are better understood, it is difficult to decide whether these data will be of value to global studies.

The coral ¹³C data show a more consistent trend, but it may be premature to generalize from a single example. The atmospheric ¹³C data present the fewest complications, but are only available for two short periods, 22 yr apart. The coral and atmospheric data (Table 1) do suggest, however, that the ¹³C/¹⁴C ratios in atmospheric CO₂ and surface ocean water, at least qualitatively, have both shifted in the past 100 years as expected if industrial CO₂ or land biospheric CO₂ had entered the atmosphere.

Since nuclear weapons testing does not generate ¹³C, the industrial ¹³CO₂ effect ought to be traceable for the entire industrial era and in the future. The advantage of possible future studies is considerable since the rate of industrial CO₂ production in A.D. 2000 is likely to be over twice that of A.D. 1978 and 6 times larger that in A.D. 1954 when the ¹⁴C record was blocked out by weapons testing. Thus we may expect to see continued interest in ¹³C measurements even if present data do not show unmistakable promise of success.

So far ¹³C/C data have not received the detailed theoretical interpretation accorded ¹⁴C data, but Stuiver (78), Oeschger and Siegenthaler (78) and Siegenthaler et al. (78) have presented evidence, based on models, that the shift in the tree ring data is considerably too large and begins too early to be owing solely to industrial CO₂ from the land biosphere from A.D. 1850 to 1950 comparable in magnitude to that of industrial CO₂.

Although a biospheric release of carbon seems to follow unmistakably from the data, the geochemical calculations of Stuiver and Oeschger have not been presented in sufficient detail to assess directly the quantitative validity of their computations. Stuiver (78) indeed, avoided the direct use of a model for ¹³C altogether by assuming that the decrease in ¹³C/C owing to industrial CO₂ was proportional to the corresponding decrease in ¹⁴C/C. Specifically he argued that since industrial CO₂ from A.D. 1850 to 1959 contained 18‰ less ¹³C than atmospheric CO₂, but 100070 less ¹⁴C, that therefore the shift in ¹³C owing to industrial CO₂ should be 0.018 times the ¹⁴C shift. To overcome the possible interference of variations in solar activity with the latter, he accepted a model prediction of the ¹⁴C Suess Effect for Oeschger et al. (75). As shown below, his approximation, although correct as to order of magnitude, is substantially in error because it neglects isotopic fractionation associated with ¹³C exchange between reservoirs.

To establish a correct prediction requires a detailed consideration of such fractionation. It is my purpose here to carry out this analysis giving equal consideration to both ¹³C and ¹⁴C. First I will precisely define the Suess Effect for ¹⁴C, and its extension to ¹³C. I will indicate how the effect relates to the fractions of industrial CO₂ which appear in the various reservoirs of the natural carbon system. The related fractions for ¹³C and ¹⁴C will also be considered. Next, I will show with a two reservoir geochemical model that the Stuiver approximation would prevail if isotopic fractionation and radioactive decay, as they affect the redistribution of industrial CO₂, were negligible compared to the fractionation involved in the natural formation of fossil fuel. Then, for several pairs of reservoirs representing important segments of the natural carbon cycle, I will establish expressions for calculating the Suess Effect without neglecting fractionation and radioactive decay. The formulism of these two reservoir models will afterwards be employed to construct a four reservoir model involving simultaneously the land biosphere and a two layer ocean. Finally I will compare the experimental results for ¹³C and ¹⁴C with the predictions of this model for the important case of an exponentially growing industrial CO₂ source. To allow comparison with the vertical diffusive model of the oceans of Oesch-
The emphasis of this article will be on formulating models rather than surveying or interpreting large amounts of observation data. Although the models to be described have simple geochemical properties, their formulation with isotopic fractionation included will be as complete as possible for possible application to more complicated (and presumably more realistic) models which may later on be derived when the observation data become more reliable.

Nevertheless, the usefulness of ^{13}C and ^{14}C as tracers of industrial CO$_2$ will be reflected upon towards the end of the article. Indeed, for those readers who are not interested in the mathematical details, the article has been arranged so that sections 1 - 3 and subsection 11.1 form a sufficient background to allow readers to pass over the mathematical development (sections 4 - 10 and subsections 11.2 - 11.5) and still be able to comprehend the final section on interpretation.

1. Definition of the Suess Effect

1.1 General comments

The Suess Effect has generally been understood to denote the decrease in $^{14}\text{C}/\text{C}$ ratio in atmospheric CO$_2$ caused by the combustion of fossil fuel (Baxter, 70, p. 213). In no published study, however, has the Suess Effect been defined in precise mathematical terms.

For purposes of the present discussion, a broad definition is desirable. Therefore I will define the ^{14}C Suess Effect as the change in carbon-14 relative to carbon-total in any part of the carbon cycle caused by admixture of industrial CO$_2$. Also, I will introduce a corresponding ^{13}C Suess Effect defined as the decrease in ^{13}C brought about by industrial CO$_2$. The simple term "Suess Effect" will be used when the distinction between isotopes is not important. Industrial CO$_2$ shall mean all of the CO$_2$ produced by man commercially including the manufacture of cement (Baxter, 70; Keeling, 73a) but not CO$_2$ from the combustion of wood or agricultural products. Carbon-total (symbol C), will refer to the sum of all the carbon isotopes, but practically speaking, to the sum of ^{12}C and ^{13}C, since the abundance of ^{14}C is negligible in comparison.

Isotopic data are conventionally expressed relative to experimental laboratory standards, and in the case of ^{14}C are usually corrected for variations in ^{12}C (Broecker, 59a). I prefer not to make reference to these calibration procedures in the definition of the Suess Effect, although it is necessary to take them into account when comparing observational data with model predictions, as is done in section 12, below.

Carbon-13 variations are usually reported relative to carbon-12 rather than to carbon-total, because natural isotopic fractionation is directly expressed in terms of ratios of single isotopes. For natural carbon the rare isotopes are in such low abundance, however, that the slight inconstancy of fractionation factors, expressed relative to carbon-total, may be neglected (Keeling, 79b). Therefore, for uniformity with the definition of the ^{14}C Suess Effect, the ^{13}C Suess Effect will be defined in terms of $^{13}\text{C}/\text{C}$ rather than $^{13}\text{C}/^{12}\text{C}$ isotopes. The absolute abundance of ^{13}C relative to ^{12}C is well enough known to convert published data to $^{13}\text{C}/\text{C}$ ratios without introducing appreciable errors (Mook, 73).

As just defined, the Suess Effect is essentially a theoretical concept. Observed variations in ^{13}C and ^{14}C in nature must in truth reflect a multiplicity of causes besides admixture of industrial CO$_2$. Indeed, as noted above, solar activity and other actions of man such as changing agricultural practices may cause greater isotopic variations than industrial CO$_2$. A related observable quantity to compare with the theoretical Suess Effect is thus useful. I will therefore define an "observable Suess Effect" as the change in $^{13}\text{C}/\text{C}$ or $^{14}\text{C}/\text{C}$ ratio of atmospheric CO$_2$ (or the carbon in some other reservoir) owing to whatever causes were actually responsible for the change. To make the latter definition precise, the isotopic change will be measured from a prescribed year prior to which industrial CO$_2$ had only a small influence. Since industrial CO$_2$ production has been computed on a yearly basis only since A.D. 1860, that year might be a logical choice to mark the beginning of the observable Suess Effect, but earlier dates may be of interest as well. For such cases, assumption of an exponentially rising production rate prior to A.D. 1860, establishes accurately enough the CO$_2$ production before 1860 (Keeling, 73a, p. 192). For ^{14}C the observable Suess Effect effectively ends in A.D. 1954, but for ^{13}C any recent or future ending date is appropriate.

1.2 Mathematical expressions for the Suess Effect

To formulate the above definitions mathematically requires that several other quantities first be defined.

The amount of carbon-total in a designated carbon pool or "reservoir" of the carbon cycle I will denote by N_i where i stands for a letter subscript denoting the reservoir. Following a widely used convention, "a" will denote the atmosphere, "b", the land biosphere, "m", the ocean surface "mixed" layer, "d", the ocean subsurface "deep" layer. This notation may obviously be extended to more reservoirs or to subdivisions of reservoirs.

In so far as possible, equations will be written which apply to both of the rare isotopes, ^{13}C and ^{14}C. A left superscript asterisk will be used to denote a rare isotopic quantity; e.g. *N_a will denote the $^{13}\text{CO}_2$ or $^{14}\text{CO}_2$ content of the atmosphere. (I will neglect other carbon species such as CO and CH$_4$, which exist in the atmosphere in quantities too small to be important here.)

Carbon isotopic ratios will in general be denoted by the symbol, R, subscripted to identify the carbon pool. Thus:

$$R_i = ^*N_i/N_i$$

(1.1)

refers to either the $^{13}\text{C}/\text{C}$ or $^{14}\text{C}/\text{C}$ ratio in reservoir i.
When it is necessary to distinguish isotopes, the atomic weight will be specified. Thus the ratios:

\[^{13}R_a = \frac{^{13}N_a}{N_a} \]

(1.2)

\[^{14}R_a = \frac{^{14}N_a}{N_a} \]

(1.3)

will refer, respectively, to the 13C/C and 14C/C ratios of atmospheric CO$_2$.

An optional additional subscript will denote a specific time. In particular, "o" will represent a preindustrial time in which the cumulative production of industrial CO$_2$ is as yet essentially zero. Since some industrial CO$_2$ was already present in A.D. 1860 or any other reasonable starting date for observations, this date will be called t_1 rather than t_o, and the observable Suess Effect at time t_2 will be defined by:

\[S_{a2} = \frac{(R_{a2} - R_{a1})}{R_{a1}} \]

(1.4)

or specifically for 14C:

\[^{14}S_{a2} = \frac{(^{14}R_{a2} - ^{14}R_{a1})}{^{14}R_{a1}} \]

(1.5)

where t_2 is any suitable time after t_1.

Similarly, for any reservoir i, at time t_j, subsequent to t_1:

\[S_{ij} = \frac{(R_{ij} - R_{i1})}{R_{i1}} \]

(1.6)

where R_{ij} and R_{i1} denote the observed, i.e., actual, isotopic ratios for times t_j and t_1.

Consistent with the definition of the observable Suess Effect, the theoretical Suess Effect will be defined for reservoir i by the expression:

\[S_i = \frac{(R_i - R_{io})}{R_{io}} \]

(1.7)

where R_{io} denotes the preindustrial isotopic ratio, and S_i and R_i are regarded as continuous functions of time, determined by a geochemical model of the carbon cycle. To be completely consistent in defining the theoretical Suess Effect, the only independent disturbance considered in calculating S_i and R_i should be industrial CO$_2$. But because the interactions of the land biosphere and the atmosphere present a complex web of causes and effects which are difficult to separate in terms of this single disturbance by man, the definition will be expanded to encompass changes in isotopic ratios related to biospheric perturbations stemming from human activities.

1.3 Relation of Suess Effect to industrial CO$_2$ production

The theoretical Suess Effect is, perforce, a function of the total amount of industrial CO$_2$ production up to a given year. Since this latter quantity is not exactly known (e.g. Keeling (73a) estimates 13% uncertainty) the theoretical Suess Effect suffers numerical uncertainty quite apart from uncertainty related to an imperfect understanding of the natural carbon cycle. For the 13C Suess Effect, uncertainties in the 13C/C ratio of industrial CO$_2$ of several per mil (see, e.g., Schwarz, 70) also influence the numerical evaluation. Moreover, to relate the theoretical Suess Effect to observable isotopic ratios requires a comparison of recent and preindustrial ratios. The latter are not clearly established, as discussed later.

Keeping these limitations in mind, we shall now formulate the Suess Effect as a function of industrial CO$_2$ production. Let Q, a function, of time, denote the cumulative input of industrial CO$_2$ to the carbon cycle, and r_i the fraction of this industrial CO$_2$ residing in reservoir i at the time Q is evaluated. Then:

\[r_i = \frac{(N_i - N_{io})}{Q} \]

(1.8)

\[= n_i/Q \]

(1.9)

where N_{io} denotes the preindustrial amount of CO$_2$ in reservoir i and n_i the departure of N_i from this initial value. For example the airborne fraction:

\[r_a = \frac{n_a}{Q} \]

(1.10)

according to data for the period 1956 to 1978, has a value of approximately 54% (Keeling, 79a).

To relate the theoretical Suess Effect to Q, it is useful to define corresponding reservoir fractions for 13C and 14C. We encounter a problem for 14C, however. Industrial CO$_2$ contains essentially no 14C, and thus a reservoir fraction for industrial 14CO$_2$ cannot be defined.

It might appear at first glance that the amount of 14C in each reservoir would be unaffected by the input of other isotopes of carbon. But this would require not only that the isotopes exhibit identical chemical behavior, but that they also not interact mutually with other chemical species affected by industrial CO$_2$. This possibility is of some interest as a limiting case, and is
treated in section 2 below. In general, however, we expect that adding 12CO2 and 13CO2 to some part of the carbon cycle results in a redistribution of 14C within other interacting reservoirs, even though the total amount of 14C is not changed by the perturbation. Since this redistribution is a function of the industrial CO2 input, Q, it is useful to define dimensionless factors, 14ri, which are, in so far as possible, analogous to the carbon-total fractions, ri.

Let us define these fractions by the expression:

\[14r_i = \frac{14N_i}{14R_{io}Q} \]

The choice of 14Rio in the denominator is arbitrary, but turns out to be convenient in producing a simple expression relating the redistribution of 14C to the Suess Effect. By equation (1.11) we, in effect, compare the actual change in 14C in each reservoir, 14ni, to the change which would have occurred if all of the industrial CO2 had accumulated in that reservoir, and (contrary to reality) had had the same 14C/C ratio as existed in the reservoir at the beginning of the industrial era.

A 13C airborne fraction could be defined in terms of the actual 13CO2 input:

\[13Q = 13R_f Q \]

where 13Rf denotes the 13C/C ratio of industrial CO2. However, for consistency and later mathematical convenience, I will adopt a definition analogous to equation (1.11) i.e.:

\[13r_i = \frac{13N_i}{13R_{io}Q} \]

Thus, for either isotope:

\[*r_i = \frac{*N_i}{R_{io}Q} \]

where *N_i stands for *N — *Nio.

For consistency in referring to the rare isotopic composition of industrial CO2, the symbol Rf will be employed to denote either the 13C/C or 14C/C ratio with the understanding that in all cases

\[14R_f = 0. \]

1.4 Use of an isotopic label

Although the main body of this article proceeds from the definition already presented, it will prove convenient to carry out some model computations in section 3, below, in terms of an isotopic “label” variable related to the isotopic perturbation Rf — Rio. Since an otherwise linear model for carbon-total and rare isotopic carbon becomes non-linear if isotopic ratios are treated as system variables, it is advantageous to define an isotopic label as a linear combination of the perturbations *ni and ni. Since by definition (equation 1.1):

\[R_i - R_{io} = \frac{*N_{io} + *n_i}{N_{io} + n_i} - \frac{N_{io}}{N_{io}} \]

it follows that:

\[R_i - R_{io} = \frac{(*n_i - R_{io} n_i)}{N_i}. \]

The label variable for any reservoir i, I will thus define by the expression:

\[\ell_i = \frac{(*n_i - R_{io} n_i)}{R_{ao}} \]

which is equivalent to:

\[\ell_i = \frac{(R_i - R_{io})N_i}{R_{ao}}. \]

This formulation gives us a quantity, which for small perturbations, is very nearly proportional to the isotopic ratio difference, Rf — Rio, but has the dimensions of carbon-total. I have normalized \(\ell_i \) to the preindustrial isotopic ratio of the carbon pool directly receiving the industrial CO2 source, i.e. to Rao. This is an arbitrary, but convenient, choice.

Eliminating the *ni and ni in equation (1.18) by means of equations (1.9) and (1.14):

\[\ell_i = (R_{io}/R_{ao})(*r_i - r_i)Q. \]

In terms of label the theoretical Suess Effect (cf. equations (1.7) and (1.19)) is therefore:

\[S_i = \frac{R_{ao} \ell_i}{R_{io}N_i} \]

whence, in accordance with equation (1.20):

\[S_i = (Q/N_i)(*r_i - r_i). \]

This last formulation is especially useful in computing the theoretical Suess Effect because, as discussed later, the industrial CO2 input is approximated by an expo-
The Suess Effect

ential function of time. If the governing equations of carbon cycle model are linearized, which is appropriate for the small relative changes in \(N_i \) and \(R_i \) which have occurred up to the present, then the predicted values of \(*r_i \) and \(r_i \) are invariant and readily evaluated.

1.5 Relating the Suess Effect to observational data

A minor complication occurs in comparing model predictions with observations because the preindustrial quantities, \(R_{io} \) and \(N_{io} \), are not identical to the corresponding quantities for A.D. 1860 nor to any other year which might be selected as the starting year of the Suess Effect, \(t_1 \). Indeed, the carbon-total abundances, \(N_{io} \), cannot be obtained from any historical data, such as tree rings, but must be assigned values inferred from the industrial period. Different approximations of the model equations, and of the functional form given to the input \(Q \), therefore may lead to different assigned values. These assignments do not markedly hinder a comparison of theory and observations as parameters are varied for any given model, because of more serious uncertainties arising from the data and model assumptions. Choosing different initial values for different models makes comparison of models more difficult, however, because small differences in prediction may be of interest in deciding between models. Therefore it is worthwhile to pay close attention to the rational for assigning preindustrial values.

A more serious complication arises because a steady state between pools of the carbon cycle probably did not exist at the time when significant use of fossil fuel first began. Thus the perturbation of carbon and its isotopes must be superimposed on a time variable record of abundances and isotopic ratios. As noted in section 3, the models which we employ to determine the theoretical Suess Effect essentially do no more than predict those isotopic changes brought about by industrial CO\(_2\) which are large enough to overshadow the effects of other phenomena overlooked in the analysis.

For \(^{13}\)C it is customary to express isotopic ratios as the per mil variation from a standard ratio. The latter is typically that of the University of Chicago Standard, "PDB" (Craig, 57; Mook, 73). Since \(\delta^{13}\)C, the customary symbol for the per mil variation, typically refers to variations in \(^{13}\)C/\(^{12}\)C, I will adopt a different symbol, \(\delta^{15}\)C, for variations in \(^{13}\)C/\(^{12}\)C. Formally, I will define this quantity (in per mil or any other suitable unit) by:

\[
\delta^{13}\text{C} = \frac{^{13}\text{R}}{^{12}\text{R} \ast} - 1.
\]

(1.23)

where \(^{13}\text{R} \ast \) denotes the \(^{13}\)C/\(^{12}\)C ratio of the standard.

For \(^{14}\)C the analogous formula is:

\[
\delta^{14}\text{C} = \frac{^{14}\text{R}}{^{14}\text{R} \ast} - 1.
\]

(1.24)

where \(^{14}\text{R} \ast \) denotes the standard ratio. (This ratio is typically 0.95 of the ratio of an Oxalic Acid standard furnished by the U.S. National Bureau of Standards.) Hence for either isotope:

\[
\delta^C = \frac{R}{R \ast} - 1.
\]

(1.25)

For reservoir \(i \) the observable change in \(\delta^C \) from time \(t_1 \) to \(t_2 \) is related to the observable Suess Effect, \(S_{i2} \), by:

\[
(\delta^C)_{t_2} - (\delta^C)_{t_1} = (R_{t_2}/R \ast)S_{i2}
\]

(1.26)

i.e., the isotopic change in terms of \(\delta^C \) differs from \(S_{i2} \) merely in its referral to the standard ratio, \(R \ast \), rather than to the ratio, \(R_{t_1} \).

The theoretical change in isotopic ratio for either rare isotope caused by admixture of industrial CO\(_2\) since preindustrial times, I will denote by \(\Delta\delta^C \). This quantity is related to the theoretical Suess Effect by the relation:

\[
\Delta\delta^C_i = (R_{io}/R \ast)S_i
\]

(1.27)

or in terms of label (cf. equation (1.21)):

\[
\Delta\delta^C_i = (R_{ao}/R \ast)(\epsilon_i/N_i).
\]

(1.28)

2. The Stuiver Approximation

2.1 Mathematical expression for the approximation

The Suess Effects for \(^{13}\)C and \(^{14}\)C are obviously closely related. Thus the proposal of Stuiver (78) to estimate the atmospheric Suess Effect for \(^{13}\)C by multiplying the \(^{14}\)C Suess Effect by the \(^{13}\)C/\(^{12}\)C ratio of fossil fuel relative to atmospheric CO\(_2\) is not an unreasonable first approximation. It will help in understanding how the Suess Effect arises to investigate two relatively simple examples in which his approximation holds. The first example will be considered in this section, the second in the following section.

Let us express the Stuiver approximation using the symbols of the previous section. We identify \(t_1 \) with A.D. 1850 and \(t_2 \) with A.D. 1950, the inclusive years considered by Stuiver. His approximation is:

\[
\frac{^{13}\delta_{\text{f}}}{^{14}\delta_{\text{f}}}_{a2} = \frac{^{13}\epsilon_{\text{f}}}{^{14}\epsilon_{\text{f}}}_{a2}
\]

(2.1)

where:

\[
^{13}\epsilon_{\text{f}} = \frac{^{13}\text{R}_f - ^{13}\text{R}_{io}}{^{13}\text{R}_{io}}
\]

(2.2)

denotes the relative variation in \(^{13}\)C/\(^{12}\)C ratio of industrial \(^{12}\)CO\(_2\) from that of preindustrial carbon of reservoir \(i \). A similar expression will apply to \(^{14}\)C (see equation 2.41). The theoretical Suess Effect corresponding to equation (2.1) is:

\[
^{13}\text{S}_a = -^{13}\epsilon_{\text{fa}}^{14}\text{S}_a.
\]

(2.3)
According to Stuiver, ^{13}C is equal to 0.018 (often written 18‰) for A.D. 1850-1950.

2.2 A simple model to illustrate the approximation

Let us consider a simple geochemical model in which a perturbation by industrial CO$_2$ is imposed on two interacting carbon pools which would otherwise be in a steady state (Fig. 1). We will assume that the two reservoirs exchange carbon of all isotopic forms according to a first order kinetic law in which the flux of a given isotope from one reservoir to the other is proportional to the amount of that isotope in the reservoir from which the flux emanates. Therefore, the proportionality constants are the same for carbon-total and both rare isotopes, i.e. isotopic fractionation does not occur.

One pool, reservoir a, represents the atmosphere; the other, reservoir b, represents a second carbon pool which exchanges carbon directly with the atmosphere. It might, for example, be either biospheric or oceanic. Let us restrict our concern to reservoir exchanges which appreciably influence the atmospheric carbon distribution on time scales of 100 yr or less. Thus we assume that changes in the fluxes are not appreciably influenced by radioactive decay for which the time constant is the order of 8000 yr.

\[y_f(t) \]

\[N_a(t) \]

\[N_b(t) \]

\[\frac{dN_a}{dt} = k_{ba}N_b - k_{ab}N_a + \gamma_f \]

\[\frac{dN_b}{dt} = -k_{ba}N_b + k_{ab}N_a \]

(2.4)

where k_{ba} and k_{ab} denote constant (i.e. steady state) transfer coefficients and t denotes time. The source term, y_f, is related to the cumulative industrial CO$_2$ production, Q, according to:

\[Q = \int_{t_0}^{t} y_f dt \]

(2.5)

To solve equation (2.4) we decompose each carbon mass, N_i, into a steady state term, N_{io}, and a perturbation, n_i, yielding the steady state equations:

\[\frac{dN_{ia}}{dt} = - \frac{dN_{ib}}{dt} = k_{ba}N_{ib} - k_{ab}N_{ia} = 0 \]

(2.6)

and the perturbation equations:

\[\frac{dn_a}{dt} = k_{ba}n_b - k_{ab}n_a + \gamma_f \]

(2.7)

\[\frac{dn_b}{dt} = -k_{ba}n_b + k_{ab}n_a \]

(2.8)

The mathematical solution to these equations is conveniently obtained using Laplace transforms. Each term is multiplied by e^{st} where s is a generalized frequency appearing in the transforms but not in the final solution. Integrating from $t = 0$ to ∞:

\[\left(s + k_{ab} \right) \tilde{n}_a - k_{ba} \tilde{n}_b = \tilde{\gamma}_f \]

(2.9)

where:

\[\tilde{n}_i = \int_{-\infty}^{\infty} e^{-st}n_i \, dt \]

(2.10)

\[\tilde{\gamma}_f = \int_{-\infty}^{\infty} e^{-st}\gamma_f \, dt \]

(2.11)

\[\int_{-\infty}^{\infty} e^{-st}(d \tilde{n}_i/dt) \, dt = -(n_i)_{t=0} + s \tilde{n}_i \]

(2.12)

\[= s \tilde{n}_i \]

(2.13)

In matrix notation and with \tilde{n}_i preceding \tilde{n}_a (as a convenience to check with section 9, below):

\[\begin{bmatrix} s + k_{ab} & -k_{ab} \\ -k_{ba} & s + k_{ab} \end{bmatrix} \begin{bmatrix} \tilde{n}_b \\ \tilde{n}_a \end{bmatrix} = \begin{bmatrix} 0 \\ \tilde{\gamma}_f \end{bmatrix} \]

(2.14)

Since the \tilde{n}_i are related by a set of linear algebraic equations, they are readily solved for by the use of determinants (see for example, Bronson, 69). Thus:
The general solution for \(n_a \) and \(n_b \) will not be discussed (see for example, Keeling, 73b). Considerable insight into the properties of this model can be obtained, however, by considering the case of an industrial CO\(_2\) source which obeys the exponential relationship:

\[
\gamma_f = \gamma_{fo} \exp(\mu t)
\]
\[(2.16)\]

where \(\gamma_{fo} \) and \(\mu \) are constants.

As shown in Fig. 2, the production of industrial CO\(_2\) is actually approximated by an exponential function of the form of equation (2.16) except for the period A.D. 1914 to 1945 when two world wars and a great economic depression interfered with industrial growth. The value of \(\mu \) for a fit of the production data both before and after this period is close to \(1/22 \) yr\(^{-1}\). It is likely that a somewhat slower but also nearly exponential growth prevailed for many years before 1860 (Hubbert, 74).

Assume to good approximation that the cumulative production up to 1914 is:

\[
Q = \int_0^t \gamma_f \, dt
\]
\[(2.17)\]

\[
= (\gamma_{fo}/\mu) \exp(\mu t).
\]
\[(2.18)\]

It also turns out that the equation (2.18) leads to quite realistic predictions over the recent interval A.D. 1945 to 1978, since the period is greater than one e-fold time (Bacastow, 79).

It can be demonstrated that, if equation (2.18) holds, the solutions to equations (2.7) and (2.8) are of the form:

\[
n_i = n_{io} \exp(\mu t)
\]
\[(2.19)\]

where the \(n_{io} \) are constants. If the exponential relationships (2.16) and (2.19) are introduced into the perturbation equations (2.7) and (2.8), the factor, \(\exp(\mu t) \), appears in all of the terms and factors out. The result in matrix notation is:

\[
\begin{bmatrix}
\mu + k_{ba} & -k_{ab} \\
-k_{ba} & \mu + k_{ab}
\end{bmatrix}
\begin{bmatrix}
n_{ao} \\
n_{bo}
\end{bmatrix}
= \begin{bmatrix}
0 \\
\gamma_{fo}
\end{bmatrix}
\]
\[(2.20)\]

with the solution:

\[
n_{ao} = \frac{\gamma_{fo}(\mu + k_{ba})}{\mu(\mu + k_{ba} + k_{ab})}
\]
\[
n_{bo} = \frac{\gamma_{fo}k_{ab}}{\mu(\mu + k_{ba} + k_{ab})}.
\]
\[(2.21)\]

Thus the general solution for the transforms, \(\Pi_i \), can be further transformed into a solution for the \(n_{io} \) by making the replacements:

\[
\begin{bmatrix}
\tilde{n}_i/(s - \mu) = \tilde{n}_i \\
\gamma_{fo}(s - \mu) = \gamma_f \\
\mu = s
\end{bmatrix}
\]
\[(2.22)\]

The first two replacements proceed directly from the Laplace transforms of equations (2.16) and (2.19), while the third is readily established by inspection after the first two replacements have been made. The corre-
sponding reservoir fractions are of the form (cf. equations (1.9), (2.18), (2.19)):

\[r_i = \frac{n_{io} \mu}{\gamma_{fo}}. \]

(2.23)

Hence:

\[
\begin{align*}
 r_a &= \frac{\mu + k_{ba}}{\mu + k_{ba} + k_{ab}} \\
 r_b &= \frac{k_{ab}}{\mu + k_{ba} + k_{ab}}.
\end{align*}
\]

(2.24)

Since \(\mu, k_{ab} \) and \(k_{ba} \) are constant, \(r_a \) and \(r_b \) are invariant.

2.4 Basic equations for rare isotopic carbon

Let us next consider the corresponding equations for the rare isotopes. For \(^{14}C \), the industrial perturbation is superimposed on a steady state in which radioactive decay is continually removing \(^{14}C \) while cosmic rays are continually producing it. If time variations in \(^{14}C \) production are neglected, the \(^{14}C \) production rate, \(^{14}I_{uo} \), is a constant related to preindustrial decay in both reservoirs by:

\[^{14}I_{uo} = 14^{l}(^{14}N_{ao} + ^{14}N_{bo}) \]

(2.25)

where \(14^{l} \) denotes the radiocarbon decay constant.

Generalizing to both rare isotopes:

\[^{l} \Gamma_{o} = ^{l}(^{*N_{ao}} + ^{*N_{bo}}) \]

(2.26)

where, since \(^{13}C \) is nonradioactive:

\[
\begin{align*}
 ^{13} \Gamma_{o} &= 0 \\
 ^{13} \Gamma_{o} &= 0
\end{align*}
\]

(2.27)

The steady state equations for \(^{13}C \) and \(^{14}C \) are therefore:

\[
\begin{align*}
 \frac{d^{*N_{uo}}}{dt} &= k_{ba} *N_{bo} - k_{ab} *N_{ao} + ^{l} \Gamma_{o} - ^{l} \lambda *N_{uo} = 0 \\
 \frac{d^{*N_{bo}}}{dt} &= - k_{ba} *N_{bo} + k_{ab} *N_{ao} - ^{l} \lambda *N_{bo} = 0
\end{align*}
\]

(2.28)

and the perturbation equations:

\[
\begin{align*}
 \frac{d^{*n_{uo}}}{dt} &= k_{ba} *n_{bo} - k_{ab} *n_{ao} + ^{l} \lambda *n_{uo} + R_f \gamma_f \\
 \frac{d^{*n_{bo}}}{dt} &= - k_{ba} *n_{bo} + k_{ab} *n_{ao} - ^{l} \lambda *n_{bo}
\end{align*}
\]

(2.29)

We will, for simplicity, assume that \(R_f \), the \(^{13}C/C \) or \(^{14}C/C \) ratio of industrial CO\(_2\), is constant.

Since our concern is restricted to processes which appreciably influence carbon distributions on the time scale of 100 yr or less, we are justified in neglecting the perturbation terms, \(^{*l} \lambda *n_{uo} \) for radioactive decay, in comparison to the transfer fluxes \(k_{ba} *n_{b} \) and \(k_{ab} *n_{a} \).

With the terms \(^{l} \lambda *n_{i} \), omitted, equations (2.29) are identical to those for carbon-total except that \(*n_{i} \) replaces \(n_{i} \) and \(R_f \) replaces \(\gamma_{f} \). For the case where \(\gamma_{f} \) is an exponential function of time (equation (2.16)), it follows that the \(*n_{i} \) are also exponential time functions of the form:

\[*n_{i} = *n_{io} e^{\mu t} \]

(2.30)

analogous to equation (2.19). Carrying out a calculation similar to that for carbon-total, we find that:

\[
\begin{align*}
 ^{*n_{uo}} &= \frac{R_f \gamma_f (\mu + k_{ba})}{\mu (\mu + k_{ba} + k_{ab})} \\
 ^{*n_{bo}} &= \frac{R_f \gamma_f k_{ab}}{\mu (\mu + k_{ba} + k_{ab})}
\end{align*}
\]

(2.31)

2.5 Derivation of the Suess Effect and the Stuiver approximation

Comparing the above results for rare isotopic carbon with equations (2.21) for carbon-total, we find for the exponential case that:

\[*n_{uo} = R_f *n_{io}. \]

(2.32)

Also, it follows from the definition of the reservoir fractions for carbon-total and the rare isotopes (see equations (1.9) and (1.14)) that:

\[*r_{i} = \frac{^{*n_{f_{i}}}}{R_{io} *n_{i}}. \]

(2.33)

Therefore, for the exponential case (equation (2.32)):
The corresponding theoretical Suess Effect is obtained by substituting this expression for r_i in equation (1.22):

$$ S_i = \frac{(R_f - R_{io})Qr_i}{R_{io}N_i} \tag{2.35} $$

or, in terms of the industrial CO₂ isotopic variation factors, ϵ_{fb} defined by equation (2.2):

$$ S_i = \epsilon_{fi}N_i - r_i \tag{2.36} $$

This expression is readily evaluated numerically for either reservoir. First, the r_i are found in terms of the transfer coefficients, k_{ab} and k_{ba} by equations (2.24). Then the N_i are computed from the r_i using equation (1.8), i.e.:

$$ N_i = N_{io} (1 + r_iQ) \tag{2.37} $$

For 13C, which does not decay radioactively, the steady state equations (2.28) simplify to:

$$ k_{ab}^{13}N_{ao} = k_{ba}^{13}N_{bo} \tag{2.38} $$

whence (cf. equation (2.6)) the isotopic ratios at steady state are equal, i.e.:

$$ ^{13}R_{ao} = ^{13}R_{bo} \tag{2.39} $$

Thus for 13C (cf. equation (2.2)):

$$ ^{13}\epsilon_{fa} = ^{13}\epsilon_{fb} \tag{2.40} $$

For 14C, since R_f is zero (see equation (1.15)):

$$ ^{14}\epsilon_{fi} = -1 \tag{2.41} $$

Therefore it follows from equation (2.36) that:

$$ ^{13}S_i = -^{13}\epsilon_{fa}^{14}S_i \tag{2.42} $$

and thus the Stuiver approximation holds for both reservoirs.

3. Another look at the Stuiver Approximation

3.1 A more general perturbation model

The foregoing two reservoir model, although useful as an introductory attempt to derive the Suess Effect for 13C and 14C, is an inadequate representation of atmospheric CO₂ exchange with either the land biosphere or the oceans, because not even approximately do either of these reservoirs exchange carbon with the atmosphere in accordance with a first order kinetic law of the kind depicted by equations (2.4).

With respect to carbon-total, a far more realistic model can be devised based on the assumption that the change in flux of carbon emanating from a reservoir is proportional to the change in amount of carbon in the reservoir. The perturbation equations for this model take the form:

$$ \frac{dn_a}{dt} = k_{ba} \beta_b n_b - k_{ab} \beta_a n_a + \gamma_f \tag{3.1} $$

$$ \frac{dn_b}{dt} = -k_{ba} \beta_b n_b - k_{ab} \beta_a n_a $$

where, as before, k_{ba} and k_{ab} denote exchange coefficients appropriate to the steady state, represented by equations (2.6), (2.28), and (2.39). The former perturbation fluxes, $k_{ba}n_b$ and $k_{ab}n_a$, are now modified, however, by new constant factors β_b and β_a. The latter, which I will call “perturbation factors”, may differ from unity by any finite amount. This model is illustrated in Fig. 3.

![Fig. 3. Two-reservoir model in which exchange of carbon-total is proportional to the change in amount in the donor reservoir. Rare isotopic carbon exchange is proportional to the isotopic ratio of the donor reservoir without isotopic fractionation.](image)

3.2 Exchange fluxes of carbon-total and rare isotopic carbon

Although the model described in Section 2 was solved by direct consideration of the differential equations (2.4) and (2.29) governing carbon perturbations in each separate reservoir, it is convenient for the understanding of this more complicated model to consider first the relationships for the fluxes of carbon transferred...
between reservoirs. For carbon-total it follows from equations (2.6) and (3.1) that:

\[
F_{ab} = k_{ab} N_{ao} + \beta_a k_{ab} n_a
\]

\[
= F_{bo} (1 + \frac{\beta_a n_a}{N_{ao}})
\]

(3.2)

\[
F_{ba} = k_{ba} N_{bo} + \beta_b k_{ba} n_b
\]

\[
= F_{bo} (1 + \frac{\beta_b n_b}{N_{bo}})
\]

where \(F_{ij}\) denotes the flux of carbon-total from reservoir \(i\) to \(j\), with steady state value, \(F_i_0 = F_{j_0}\), i.e.:

\[
F_{bo} = k_{ab} N_{ao}
\]

(3.3)

There is no compelling reason that the above flux equations (3.2) should apply to rare isotopic carbon since the physical, chemical and biological processes which determine \(\beta_a\) and \(\beta_b\) are only slightly influenced by the presence of rare isotopes. If we assume that reservoir exchange involves no preference for one isotope over another, i.e. that isotopic fractionation again does not occur, the flux of carbon-total at any given moment will carry with it the same mix of isotopes as exists at the moment in the emitting reservoir. Hence the rare isotopic fluxes will obey the relationships:

\[
*F_{ab} = R_a F_{ab}
\]

(3.4)

\[
*F_{ba} = R_b F_{ba}
\]

where \(*F_{ij}\) denotes the flux of rare isotope from reservoir \(i\) to \(j\). Substituting for \(F_{ab}\) and \(F_{ba}\) from equations (3.2) we obtain for rare isotopic carbon:

\[
*F_{ab} = R_a F_{bo}(1 + \frac{\beta_a n_a}{N_{ao}})
\]

\[
*F_{ba} = R_b F_{bo}(1 + \frac{\beta_b n_b}{N_{bo}})
\]

(3.5)

3.3 Perturbations of the exchange fluxes

The time dependent rare isotopic flux from reservoir \(a\) to \(b\), \(*F_{ab}\), departs from its steady state value by the perturbation:

\[
\Delta *F_{ab} = F_{bo} \left[R_a (1 + \frac{\beta_a n_a}{N_{ao}}) - R_{ao} \right]
\]

(3.6)

or, in terms of the isotopic label, \(\ell_{ab}\) (see equation (1.19)):

\[
\Delta *F_{ab} = F_{bo} \left[\frac{\ell_{ab} R_{ao}}{N_{ao}} \left(1 + \frac{\beta_a n_a}{N_{ao}} \right) + \frac{R_{ao} \beta_a n_a}{N_{ao}} \right]
\]

(3.7)

Similarly for the rare isotopic flux in the reverse direction:

\[
\Delta *F_{ba} = F_{bo} \left[R_b (1 + \beta_b n_b/N_{bo}) - R_{bo} \right]
\]

(3.8)

\[
\Delta *F_{ba} = F_{bo} \left[\frac{\ell_{ba} R_{bo}}{N_{bo}} \left(1 + \frac{\beta_b n_b}{N_{bo}} \right) + \frac{R_{bo} \beta_b n_b}{N_{bo}} \right]
\]

(3.9)

These expressions are non-linear owing to the perturbation factors:

\[
\phi_i = \frac{1 + \beta_i n_i/N_{io}}{1 + n_i/N_{io}}
\]

(3.10)

which multiply the label variables, \(\ell_i\). For the case where the perturbation factors \(\beta_i\) are equal to unity, these perturbation functions are also equal to unity, and we obtain fluxes appropriate to the earlier model. For the general case, where the \(\beta_i\) depart from unity let us re-write equations (3.7) and (3.9) in terms of the \(\phi_i\) and steady state exchange coefficients \(k_{ba}\) and \(k_{ab}\). We then obtain the expressions:

\[
\Delta *F_{ab} = k_{ab} \left(R_{ao} \phi_a \ell_a + R_{ao} \beta_a n_a \right)
\]

(3.11)

\[
\Delta *F_{ba} = k_{ba} \left(R_{bo} \phi_b \ell_b + R_{bo} \beta_b n_b \right)
\]

3.4 Solving the model equations

The perturbation equations for carbon-total may be solved in the same manner as for the previous models since they differ only in that the former constant factors \(k_{ab}\) and \(k_{ba}\) of equation (2.7) and (2.8) are replaced by new constant factors, \(\beta_a k_{ab}\) and \(\beta_b k_{ba}\). Thus, the Laplace transforms, \(\bar{n}_p\) (cf. equation (2.15)) are given by:
The perturbation equations for the rare isotopic abundance, \(n_i \), take the general form:

\[
\begin{align*}
\frac{dn_a}{dt} &= \Delta F_{ba} - \Delta F_{ab} + R_i \\
\frac{dn_b}{dt} &= \Delta F_{ab} - \Delta F_{ba}
\end{align*}
\]

(3.13)

From the definition of the label variables, \(\ell_i \) (equation (1.18)), it follows that the time rates of change of the \(\ell_i \) are related to those of the \(*n_i \) according to:

\[
\begin{align*}
R_{ao} \frac{d\ell_a}{dt} &= dn_a/dt - R_{ao} d n_a/dt \\
R_{bo} \frac{d\ell_b}{dt} &= dn_b/dt - R_{bo} d n_b/dt
\end{align*}
\]

(3.14)

Substituting for the \(dn_i/dt \) via equation (3.13), for the \(dn_i/dt \) via equation (3.11), and subsequently for the \(\Delta F_{ij} \) via equations (3.11):

\[
\begin{align*}
R_{ao} \frac{d\ell_a}{dt} &= R_{ao} (k_{ba} \phi_{ab} - k_{ab} \phi_{ba}) \\
&+ (R_f - R_{ao}) \gamma_f + (R_{bo} - R_{ao}) k_{ba} \beta_b n_b \\
R_{ao} \frac{d\ell_b}{dt} &= R_{ao} (-k_{ba} \phi_{ab} + k_{ab} \phi_{ba}) \\
&- (R_{bo} - R_{ao}) k_{ab} \beta_a n_a
\end{align*}
\]

(3.15)

For \(^{13}\text{C} \), since the isotopic ratios at steady state are equal (cf. equation (2.39)), the final terms in both equations (3.15) vanish.

For \(^{14}\text{C} \) the isotopic ratios of the carbon reservoirs differ at steady state owing to radioactive decay even in the absence of isotopic fractionation. For reservoirs or portions of reservoirs which are in contact with the atmosphere and which exchange carbon so as effectively to turn over their inventories of carbon in a 100 yr or less, the average ratios differ from that of atmospheric CO\(_2\) by a few percent. In this case, although the terms in \((R_{bo} - R_{ao}) \) do not vanish for \(^{14}\text{C} \) even for small perturbations, they may be ignored with only a small loss of accuracy.

Let us therefore neglect these terms for both rare isotopes and further restrict ourselves to small perturbations so that the non-linear quotients, \(\phi_i \), approach unity. Equations (3.15) then simplify to:

\[
\begin{align*}
\frac{d\ell_a}{dt} &= k_{ba} \ell_a - k_{ab} \ell_a + \epsilon_{fa} \gamma_f \\
\frac{d\ell_b}{dt} &= -k_{ba} \ell_b + k_{ab} \ell_a
\end{align*}
\]

(3.16)

(3.17)

where \(\epsilon_{fa} \) is as defined by equation (2.2) extended to both rare isotopes.

These equations are of the form of equations (3.1) for carbon-total, except for the factor, \(\epsilon_{fa} \), which multiplies the industrial CO\(_2\) source term, \(\gamma_f \), and the absence of the \(\beta_i \) which appear in equation (3.1). Therefore, the Laplace transforms of the \(\ell_i \) are given by:

\[
\tilde{\ell}_i = \epsilon_{fa} \tilde{n}_i
\]

(3.18)

where \(\tilde{n}_i \) denote the \(n_i \) of equations (3.12) evaluated for \(\beta_i = 1 \), i.e.:

\[
\begin{align*}
\tilde{n}_a &= \frac{\tilde{\gamma}_a (s + k_{ba})}{s(s + \beta_a k_{ba} + \beta_a k_{ab})} \\
\tilde{n}_b &= \frac{\tilde{\gamma}_b \beta_a k_{ab}}{s(s + \beta_b k_{ba} + \beta_a k_{ab})}
\end{align*}
\]

(3.19)

From the definition of the Laplace transform (cf. equation (2.10)) it follows that:

\[
\tilde{\ell}_i = \epsilon_{fa} n_i
\]

(3.20)

3.5 Derivation of the Suess Effect and Stuiver approximation

For the model under consideration, the Suess Effect is obtained by substituting the above result in equation (1.21):

\[
S_i = \frac{R_{ao} n_i'}{R_{io} N_i}
\]

(3.21)

For \(^{13}\text{C} \), since \(R_{ao} \) and \(R_{bo} \) are equal (see equation (2.39)):

\[
^{13}S_i = \frac{n_i'}{N_i}
\]

(3.22)

For \(^{14}\text{C} \), \(R_{ao} \) and \(R_{bo} \) differ by a few percent owing to radioactive decay, but since this inequality was disre-
garded in the derivation of equations (3.16) through (8.20), and since it can produce only a few percent error in \(\delta_{S_{\alpha}} \), and none in \(\delta_{S_{\alpha}} \), let us ignore it again. As in the previous model, \(\delta_{fa} \) is equal to negative one (equation (2.41)), and hence, assuming \(14R_{\alpha}/14R_{\beta} \) is equal to unity:

\[
\delta_{S_{\alpha}} = \frac{n_i}{N_i}. \tag{3.23}
\]

Eliminating \(n_i \) between equations (3.22) and (3.23) we again obtain equation (2.42). Thus the Stuiver approximation again holds. Furthermore, the derivation, in this case, does not assume any special exponential form for the input function, \(\gamma_f \). The Stuiver approximation thus applies irrespective of the form of input. Finally, the methodology is easily extended to any number of reservoirs exchanging with the atmosphere, so that a model including both an oceanic and land biospheric reservoir will also obey the Stuiver approximation if, again, all isotopic fractionation effects are neglected except for the difference in ratio between industrial and atmospheric CO2 and if the approximations that led to equations (3.16) and (3.17) are made again.

On the other hand, it would seem unlikely that the Stuiver approximation would hold if the non-linear or the final terms in equations (3.15) were important contributors to the time variations of the \(\delta_i \). These terms involve the carbon-total perturbation factors, \(\beta_i \), which, depending on their magnitudes, will have more or less influence on the computed Suess Effect independent of the isotopic industrial CO2 factor, \(\delta_{fa} \). Also, it would be unlikely that the influence of the \(\beta_i \) would almost cancel out when relating \(\delta_{S_{\alpha}} \) to \(\delta_{S_{\beta}} \).

Still more seriously, the assumption that the flux of carbon-total carries with it the same mix of isotopes as the emitting reservoir (equation (3.4)) neglects known isotopic fractionation effects of the order of magnitude of the isotopic industrial CO2 factor, \(\delta_{fa} \). Therefore, it is important to consider a model of the carbon cycle in which fractionation is included, in order to determine precisely how large are the influences of fractionation, as well as of the perturbation terms, \(\beta_i \), on the Suess Effect.

In regard to the land biosphere, it is also important to improve on the formulation for carbon-total because the perturbed uptake of CO2 may depend not only on the change in the amount of atmospheric CO2, as considered above, but also on the amount of plants photosynthesizing CO2.

Because much of the needed formulism is already revealed by considering more general versions of the two reservoir model just discussed, I will postpone consideration of models with more than two reservoirs until the general isotopic properties of the two reservoir model are examined in detail for several pairs of reservoirs of interest to the industrial CO2 problem. But before undertaking even this examination, it will be useful to make a few general remarks about the application of reservoir models to the carbon cycle.

4. General remarks concerning two reservoir models

4.1 Donor reservoir model

A reservoir or "box" model typically describes a system of reservoirs or compartments in which the behavior of a trace substance is prescribed principally or solely in terms of its rate of entering and escaping from each reservoir. A reservoir boundary may be a clearly defined physical surface, such as an air-sea boundary, or it may merely divide regions into convenient sub-regions, such as shallow and deep ocean water. Within the volumes described by these boundaries only averages or total of the properties of the reservoir are considered.

If time variable aspects of some geochemical cycle are under investigation, the flux of chemical tracer passing from one reservoir to another is most often assumed to vary in a prescribed way with the total amount, or mass, of tracer contained within the "donor" reservoir, i.e. within the reservoir from which the flux emerges. This time variable behavior of the model is often compared with a time invariant condition called a "steady state", in which the mass of tracer is everywhere conserved, in spite of gains and losses between individual reservoirs.

To express such a model in mathematical terms, let flux, \(F \), be a function of the mass of tracer, \(N \), in the donor reservoir:

\[
F = f(N) \tag{4.1}
\]

where both \(F \) and \(N \) may vary with time, \(t \). Assume that \(F \) possesses derivatives \(f', f'' \), ..., with respect to \(N \). Expanding \(f \) is a Taylor's series in the neighborhood of \(F_0 = f(N_0) \):

\[
F = F_0 + f'(N_0)(N - N_0) + 1/2 f''(N_0)(N - N_0)^2 + ... \tag{4.2}
\]

If the fractional increase in tracer in the reservoir is only a few percent (as is the case for additions of industrial CO2 to the carbon cycle up to the present time) it is likely that equation (4.1) can be approximated by retaining only the constant and first order terms in the expansion, i.e.:

\[
F - F_0 = f'(N_0)(N - N_0). \tag{4.3}
\]

This expression I will rewrite:

\[
\Delta F = (F_0/N_0) \beta n \tag{4.4}
\]

\[
= k \beta n \tag{4.5}
\]

where \(\Delta F \) and \(n \) denote, respectively, the departures of \(F \) and \(N \) from the unperturbed values \(F_0 \) and \(N_0 \), and \(\beta \) is a constant such that \((F_0/N_0) \beta \) is equal to \(f'(N_0) \). The
constant k (equal to F_o/N_o) is often called a "transfer coefficient". In a steady state the perturbation factor β is not established; with respect to an emerging flux only the transfer coefficient, k, is relevant. The reciprocal of k is sometimes called a "turn over" or "residence" time. This time factor is a property of the steady state. It is not a governing property of the perturbation unless β is unity so that:

$$F = kN.$$ (4.6)

4.2 Coupled reservoir model

For transfer of carbon from the atmosphere to the land biosphere, equation (4.1), in spite of its generality, is still an inadequate representation. Rather, the transfer rate in general depends on changes in amount of carbon in the receiving biospheric pool as well as in the atmospheric donor pool. This is because the rate of photosynthesis depends on the amount of plants assimilating carbon.

To allow for a dependency of flux on the receiving reservoir mass let us postulate that the flux from reservoir "a" (say, the atmosphere) to "b" (say, the land biosphere) is given, not by equation (4.1), but by the differentiable function:

$$F_{ab} = f(N_a, N_b).$$ (4.7)

Expanding f in a Taylor’s Series, the departures of F_{ab} from its steady state value F_{abo} is given by:

$$\Delta F_{ab} = F_{abo} \left\{ \frac{n_a}{N_{ao}} + \frac{n_b}{N_{bo}} + \frac{n_a n_b}{N_{ao} N_{bo}} \right\}^2 + \beta_{ab} \left\{ \frac{n_b}{N_{bo}} \right\}^2 + \frac{n_a n_b}{N_{ao} N_{bo}} + ... \}$$ (4.8)

where the β_i and β_{ij} are constants, and as in previous sections, N_{ao} and N_{bo} denote steady state amounts of carbon-total, and n_i is written for $N_i - N_{io}$. To first order the perturbation flux, ΔF_{ab}, is given by the expression:

$$\Delta F_{ab} = F_{abo} \left\{ \beta_a \frac{n_a}{N_{ao}} + \beta_b \frac{n_b}{N_{bo}} \right\}$$ (4.9)

where a prime indicates a factor related to an entering reservoir, and where F_{bo} denotes the steady state flux of carbon-total.

Although the perturbation factors β_a and β_b' arise from mathematical considerations, they have an easily grasped practical significance. Suppose that is is established that a small, say 1%, increase in the concentration of atmospheric CO$_2$ produces an x% change in the growth of individual plants. Then, in the absence of precise information on the growth behavior and if x is not more than a few percent, it is probably reasonable to assume that a 2% increase in atmospheric CO$_2$ will produce a 2x% change in growth. The factor x is expressed in the model by β_a. A similar argument applies to the factor β_b'.

If the flux from reservoir b to reservoir a is also assumed to have a dual dependency on N_a and N_b, and if again only first order terms are retained in a Taylor’s expansion, the returning perturbation flux ΔF_{ba} is given by:

$$\Delta F_{ba} = F_{ba} \left\{ \frac{n_b}{N_{bo}} + \beta_a \frac{n_a}{N_{ao}} \right\}.$$ (4.10)

It follows that the net flux between reservoirs a and b is given by:

$$\Delta F_{ab} - \Delta F_{ba} = F_{bo} \left\{ \left(\beta_a - \beta_a' \right) \frac{n_a}{N_{ao}} - \left(\beta_b - \beta_b' \right) \frac{n_b}{N_{bo}} \right\}.$$ (4.11)

In terms of the steady state transfer coefficients defined by:

$$k_{ba} = F_{bo}/N_{bo}$$

$$k_{ab} = F_{bo}/N_{ao}$$

equation (4.11) may be rewritten:

$$\Delta F_{ab} - \Delta F_{ba} = k_{ba} \left(\beta_a - \beta_a' \right) n_a - k_{ba} \left(\beta_b - \beta_b' \right) n_b.$$ (4.13)

4.3 Higher order perturbation models and their simplification

In solving reservoir models by numerical approximation it may be preferable to retain higher order terms of the Taylor’s expansion to allow for known or postulated non-linear effects (Kohlmaier, 78). For this purpose the equations just derived may be reinterpreted by including higher orders within the definition of the perturbation factors, β_a, β_b', etc. Thus, for the flux from reservoir a to b let:

$$\beta_a = \beta_{a0} + \beta_{a1} \frac{n_a}{N_{ao}} + \beta_{a2} \left(\frac{n_a}{N_{ao}} \right)^2 + \beta_{a3} \left(\frac{n_a}{N_{ao}} \right)^3 + ... \}$$ (4.14)

$$\beta_{b1} = \beta_{bo1} + \beta_{bo2} \frac{n_b}{N_{bo}} + \beta_{bo3} \left(\frac{n_b}{N_{bo}} \right)^2 + \beta_{bo4} \left(\frac{n_b}{N_{bo}} \right)^3 + ... \}$$ (4.15)
where the factors β_{ijk} ($i = a$) and β_{ijk}' ($i = b$) are constants, and cross terms of the original expansion are included in either β_a or β_b' depending on convenience in the computations.

Although equations (4.9), (4.10) and (4.11) are a useful starting point in setting up a model, in practice they may be simplified for the carbon cycle. For the land biosphere it is reasonable to assume, a priori, that the release of CO_2 by plants is not influenced by changes in atmospheric CO_2, i.e. that β_a' is zero. Also, it is possible that whatever the manner in which the uptake and release of CO_2 is perturbed by industrial CO_2 both fluxes will depend on the size of the biospheric pool to nearly the same extent, so that β_b and β_b' will be nearly the same magnitude. Thus it may suffice to assume:

$$\beta_a = \beta_b - \beta_b' = 0 \quad (4.15)$$

as was done by Bacastow and Keeling (73).

In the case of exchange between the atmosphere and the oceans and within the oceans, the expressions involving the perturbation factors may also be considerably simplified as discussed in sections 7 and 8.

4.4 External factors in atmospheric-biospheric carbon exchange

In addition to interreservoir transfers of tracer which result from mechanisms intrinsic to the model, further tracer transfers are allowed in the formulation of box models provided that they arise from causes external to the reservoir system and thus are not functions of the N_i.

In modeling the carbon cycle the addition of industrial CO_2 to the atmosphere is such an external process. Other external processes may also be important, however. Considerable evidence has been presented recently (Adams, 77; Bolin, 77; Revelle, 77; Woodwell, 78; Wong, 78) that man has significantly reduced the carbon content of the land biosphere by land clearing, soil cultivation, and man-made forest fires. Also by reforestation, fire prevention, and fertilization of soils, man has promoted plant growth which to some degree may have counteracted man induced losses. These biospheric changes are reflected in changes in atmospheric CO_2 since, on a global basis, the atmosphere is the principal source and sink of land biospheric carbon.

That man’s activities may have directly resulted in losses of carbon from the biosphere does not mean that the biospheric pool has necessarily lost more carbon to the atmosphere than it has gained back by internal mechanisms. For example, forest fires temporarily remove large amounts of carbon from the areas affected, but the forests, if not further disturbed by man after a fire, will usually grow back. Unless the frequency and severity of forest fires varies widely with time, the net global effect is small. But even if extended areas of land are irreversibly degraded with a significant loss of carbon and consequent increase in the atmospheric concentration, this increase may in turn accelerate uptake of carbon in undisturbed areas of forest or grass land so that the net global loss of carbon from human activities is not as great as would appear from the direct impact. Reservoir models allow us to examine the interplay of such external and internal disturbances to the preindustrial carbon cycle.

The properties of carbon reservoirs provide no direct basis for estimating the strengths of external processes. In the direct solution of the modeling equations, the external sources are specified in the model as functions of time. But once this specification is made, the rates of change in the masses, N_i and $\ast N_i$, can be calculated on the basis of the internal responses specified by the exchange coefficients, k_{ij}, and perturbation factors, β_i and β_i'. To estimate one or more external sources by means of model calculations requires an inverse solution of the model, in which these external sources are deduced from a knowledge of the time variations in one or more of the masses, N_i or $\ast N_i$. Almost all calculations until now have employed direct solutions of the equations, but inverse solutions may become increasingly useful if reliable time series become established for ^{13}C and ^{14}C (Siegenthaler, 78).

In most cases, the fluxes between reservoirs cannot be determined from direct observations with the accuracy and on the large scale basis required for modeling the global carbon cycle, and thus they are not an aid in inferring external sources.

As noted in section 2, we cannot be sure that the carbon cycle was in balance before the industrial era, but in the absence of definite information it is perhaps better to assume a steady state than to guess at some other preindustrial condition. But if information is adequate, further external sources may be added to the model to reduce the errors arising from having assumed a preindustrial steady state.

5. A detailed two reservoir model for carbon-total

Let us return to a discussion of the Suess Effect by examining one at a time the reservoir exchanges which result in significant readjustments of $^{13}C/C$ and $^{14}C/C$ ratios when industrial CO_2 is added to the atmosphere. To begin, let us consider a general case which is most directly applicable to the land biosphere but is sufficiently general to be adaptable to other reservoirs as well. Afterwards we will give specific attention to air-sea and subsurface oceanic exchanges.

The general two reservoir model is depicted by Fig. 4. As an initial steady state condition, let us postulate that the internally controlled fluxes of carbon-total between reservoirs "a" and "b" are in balance, and that no external processes are present. In terms of the symbols of section 4:

$$F_{bo} = k_{ba} N_{bo} = k_{ab} N_{ao}. \quad (5.1)$$

Subsequent to the time of steady state the time changes in carbon-total abundance in reservoirs a and b are given by the differential equations:
\[
\frac{dN_a}{dt} = F_{ba} - F_{ab} + \gamma_a \\
\frac{dN_b}{dt} = F_{ab} - F_{ba} + \gamma_b
\]

where \(F_{ab}\) and \(F_{ba}\), as before, denote the total fluxes of carbon-total from \(a\) to \(b\) and return, and where \(\gamma_i (i = a, b)\) denote the sum of the external sources of carbon-total for reservoirs \(a\) and \(b\) respectively (external losses from reservoirs \(a\) and \(b\) are expressed as negative values of \(\gamma_a\) and \(\gamma_b\)).

The corresponding equations for the perturbations in \(N_a\) and \(N_b\) from steady state are:

\[
\frac{dN_a}{dt} = \Delta F_{ba} - \Delta F_{ab} + \gamma_a \\
\frac{dN_b}{dt} = \Delta F_{ab} - \Delta F_{ba} + \gamma_b
\]

If the difference, \(\Delta F_{ab} - \Delta F_{ba}\), is as specified by equation (4.13):

\[
\left[\frac{d}{dt} + k_{ab} (\beta_a - \beta_a') \right] n_a - k_{ba} (\beta_b - \beta_b') n_b = \gamma_a \\
\left[\frac{d}{dt} + k_{ba} (\beta_b - \beta_b') \right] n_b - k_{ab} (\beta_a - \beta_a') n_a = \gamma_b
\]

where the equations are arranged with internal processes represented on the left and external processes on the right side of the equality sign.

Since in general the perturbation factors, \(\beta_i\) and \(\beta_i'\), are functions of the \(n_i\) according to equations (4.14), the differential equations (5.4) are non-linear and cannot be solved by exact analytical methods. If, on the other hand, variations in the factors \(\beta_i\) and \(\beta_i'\) can be neglected, then the mathematical solution to equations (5.4) is conveniently obtained using Laplace transforms as described in section 2. Multiplying each term by \(e^{st}\) and integrating from \(t = 0\) to \(\infty\):

\[
\begin{cases}
(s + k_2) \tilde{n}_a - k_1 \tilde{n}_b = \tilde{\gamma}_a \\
(s + k_1) \tilde{n}_b - k_2 \tilde{n}_a = \tilde{\gamma}_b
\end{cases}
\]

where to save in writing (Keeling, '73b) I introduce the perturbation transfer coefficients:

\[
k_1 = k_{ba} (\beta_b - \beta_b') \\
k_2 = k_{ab} (\beta_a - \beta_a')
\]

The subscripts will be numbered serially as an aid to formulating a four reservoir model in section 9. (Higher numbers will be used for air-sea and oceanic exchanges and certain special isotopic factors.)

In matrix notation and with \(\tilde{n}_0\) preceding \(\tilde{n}_r\):

\[
\begin{bmatrix}
s + k_1 & -k_2 \\
-k_1 & s + k_2
\end{bmatrix}
\begin{bmatrix}
\tilde{n}_b \\
\tilde{n}_a
\end{bmatrix}
= \begin{bmatrix}
\tilde{\gamma}_b \\
\tilde{\gamma}_a
\end{bmatrix}
\]

Solving for the \(\tilde{n}_i\), as in the case of equation (2.14):

\[
\tilde{n}_b = \frac{\tilde{\gamma}_a (k_2) + \tilde{\gamma}_b (s + k_2)}{s(s + k_1 + k_2)} \\
\tilde{n}_a = \frac{\tilde{\gamma}_a (s + k_1) + \tilde{\gamma}_b (k_1)}{s(s + k_1 + k_2)}
\]

We shall not consider here the general analytic solution to equation (5.4), although it presents no particular difficulties if the \(\beta_i\) and \(\beta_i'\) are constants. For cases where the \(\beta_i\) and \(\beta_i'\) are not constant, approximate numerical methods usually must be resorted to.

For the previously considered case where the only external source is industrial CO2, and if this source is exponential in form according to equation (2.16), then the reservoir fractions (cf. equations (2.24)) are:

\[
\begin{bmatrix}
r_b \\
r_a
\end{bmatrix}
= \frac{k_2}{\mu + k_1 + k_2}
\]

\[
\begin{bmatrix}
r_b \\
r_a
\end{bmatrix}
= \frac{\mu + k_1}{\mu + k_1 + k_2}
\]

Fig. 4. Two-reservoir model in which exchange of carbon-total depends on the change in amount in both the donor and receiver reservoirs. Rare isotopic carbon exchange is proportional to the isotopic ratio of the donor reservoir modified by isotopic fractionation.
provided that the β_i and β_i', and hence k_1 and k_2, are constant.

6. The same two-reservoir model for rare isotopic carbon

6.1 Steady-state relationships

The two reservoir exchange model just considered for carbon-total will now be adapted to predict isotopic variations. Since ^{14}C is produced naturally only in the atmosphere, it is now worthwhile to specify unequivocally which carbon reservoir represents the atmosphere. I shall choose reservoir a, so that reservoir b represents either the land biosphere or some other reservoir in contact with the atmosphere, such as the surface layer of the oceans. For convenience, a constant rate of ^{14}C production will be assumed, although it is not necessary to do so (Bacastow, 73).

Estimates of the actual production of ^{14}C during recent years have been made from direct stratospheric observations (Lingenfelter, 63), but the long term mean rate over time periods comparable to the turn-over times of the reservoirs of the carbon cycle is better established from calculations of the decay of ^{14}C in these reservoirs. This is because the amount of carbon and the $^{14}C/C$ ratio are sufficiently well known for each reservoir, that a more precise estimate can be obtained by multiplying the average amount of ^{14}C for each reservoir by the decay constant, $^{14}\lambda$, and summing over the reservoirs.

Since a two reservoir model does not consider all of the reservoirs of the carbon cycle which contain ^{14}C, the steady state of radiocarbon for this model is correctly described only if the assumed natural production is reduced, as by equation (2.25), to match the decay occurring in the two reservoirs considered in the model.

For the atmosphere the ^{14}C steady state may be described only if the assumed natural production is reduced, as by equation (2.25), to match the decay occurring in the two reservoirs considered in the model.

For the atmosphere the steady state of radiocarbon for this model is correctly described only if the assumed natural production is reduced, as by equation (2.25), to match the decay occurring in the two reservoirs considered in the model.

\[\frac{^{14}I_o + ^{14}k_{ba}}{} \]

where $^{14}I_o$ denotes the steady state rate of production of ^{14}C and $^{14}k_{ba}$ and $^{14}k_{ab}$ are the steady state transfer coefficients for ^{14}C.

These latter coefficients, and similar coefficients, $^{13}k_{ij}$, for ^{13}C, in general differ a few percent from those of carbon-total, k_{ij}, owing to differing chemical properties of the isotopes. To allow for the resulting isotopic fractionation, I introduce factors, α_{ij}, such that in general:

\[*k_{ij} = \alpha_{ij} k_{ij} \]

where $*k_{ij}$ and α_{ij} refer to either rare isotope.

Specifically for the two reservoir model:

\[
\begin{align*}
^{*k_{ba}} &= \alpha_{ba} k_{ba} \\
^{*k_{ab}} &= \alpha_{ab} k_{ab}
\end{align*}
\]

where α_{ab} and α_{ba} are identified, respectively, with the uptake and release of CO$_2$ by reservoir b. In general the α_{ij} are constants which are established from laboratory or field experiments in advance of formulating any geochemical model.

Eliminating $^{14}I_o$ from equation (6.1) via equation (2.25):

\[(^{14}k_{ba} + ^{14}\lambda) \frac{^{14}N_{bo}}{^{14}N_{bo}} = \frac{^{14}N_{ab}}{^{14}N_{ab}} \]

This last equation may be generalized to include the stable isotope, ^{13}C, by writing:

\[(^{*k_{ba}} + ^{\lambda}) \frac{^{*N_{bo}}}{^{*N_{bo}}} = \frac{^{*N_{ab}}}{^{*N_{ab}}} \]

where it is understood that $^{13}\lambda$ is equal to zero (cf. equation (2.27)).

If the $^{*k_{ij}}$ in equation (6.5) are replaced by $\alpha_{ij}*k_{ij}$ according to equation (6.2), and the resulting equation is divided by the second equality of equation (5.1), we obtain as the steady state relationship between the isotopic ratios:

\[\frac{(\alpha_{ba} + ^{\lambda}/k_{ba}) \frac{^{*N_{bo}}}{^{*N_{bo}}}}{^{*N_{bo}}} = \frac{(^{*N_{ab}}/^{*N_{ab}})}{^{*N_{ab}}} \]

whence, writing R_{bo} for $^{*N_{bo}}/^{*N_{bo}}$, and rearranging:

\[
\frac{\alpha_{ab} R_{bo} - \alpha_{ba} R_{bo} = ^{\lambda} R_{bo} / k_{ba}}{= ^{\lambda} \frac{\alpha_{ab} R_{bo}}{(k_{ab} k_{ba} + ^{\lambda})}}
\]

For ^{13}C since $^{13}\lambda$ is zero (see equation (2.27)) these expressions establish $^{13}R_{bo}/^{13}R_{ao}$ to be equal to the quotient of the fractionation factors, $^{13}\alpha_{ab}/^{13}\alpha_{ba}$. For both the land biosphere and the oceans the $^{13}C/^{12}C$ ratios are well enough known to establish the ratio, $^{13}\alpha_{ba}/^{13}\alpha_{ab}$, within one or two per mil though this relationship.

The fractionation factors for ^{14}C are expected to be the squares of those for ^{13}C (Skirrow, 65) and therefore $^{14}\alpha_{ba}/^{14}\alpha_{ab}$ is also known once $^{13}\alpha_{ba}/^{13}\alpha_{ab}$ is established. If the ^{14}C isotopic ratio, $^{14}R_{bo}$, is known along with $^{14}\alpha_{ba}/^{14}\alpha_{ab}$, this fact is a basis for establishing k_{ba} through the first equality of equations (6.7) since $^{*}\lambda$ is non-zero and known for ^{14}C. This equality has been used extensively to establish steady state exchange coefficients for oceanic reservoirs. (For example, equation (11.6), below, is a variant of equation (6.7) so employed.) Alternatively, if $^{14}R_{bo}$ is not known, but the exchange rate can be established from other data as is the case for the land biosphere, then $^{14}R_{bo}$ can be eliminated from consideration in terms of k_{ba} using the second
equality of equation (6.7). This is done, for example, in deriving equations (6.23) below.

6.2 Perturbation relationships

Because of their low concentrations relative to ^{12}C, both ^{13}C and ^{14}C act essentially as passive tracers in the carbon cycle. It is thus reasonable to postulate that their rates of transfer vary directly with their isotopic ratios in the respective emitting reservoirs. In terms of the fluxes of carbon-total, F_{ij}:

\[*F_{ab} = a_{ab} R_a F_{ab} \] (6.8)

\[*F_{ba} = a_{ba} R_b F_{ba} \] (6.9)

where isotopic fractionation is prescribed by the same factors, a_{ij}, which govern steady state exchange of rare isotopic carbon (equation (6.5)). The corresponding perturbation fluxes are:

\[\Delta *F_{ab} = a_{ab} [R_a (F_{bo} + \Delta F_{ab}) - R_{ao} F_{bo}] \] (6.10)

\[\Delta *F_{ba} = a_{ba} [R_b (F_{bo} + \Delta F_{ba}) - R_{bo} F_{bo}] \] (6.11)

Substituting for ΔF_{ab} and ΔF_{ba} according to equations (4.9) and (4.10):

\[\Delta *F_{ab} = a_{ab} F_{bo} [R_a (1 + \beta_a \frac{n_a}{N_{ao}} + \beta_b \frac{n_b}{N_{bo}}) - R_{ao}] \] (6.12)

\[\Delta *F_{ba} = a_{ba} F_{bo} [R_b (1 + \beta_a \frac{n_a}{N_{ao}} + \beta_b \frac{n_b}{N_{bo}}) - R_{bo}] \] (6.13)

To express these relations in terms of the perturbations of the rare isotope and of carbon-total, let us replace the R_i according to:

\[R_i = \frac{N_{io}}{N_i} \] (6.14)

consistent with the definition of R_i (equation (1.1)). Also, to simplify the writing let us introduce perturbation functions:

\[\phi_{ij} = \frac{1 + \beta_i (n_i/N_{io}) + \beta_j (n_j/N_{jo})}{1 + n_i/N_{io}} \] (6.15)

analogous to ϕ_i of equation (3.10), but allowing for dependency on the abundances of both the donor reservoir, i, and the receiver reservoir, j.

Substituting these relations in equations (6.12) and (6.13):

\[\Delta *F_{ab} = a_{ab} F_{bo} \left\{ a_{ab} \left(\frac{n_a}{N_{ao}} \right) + \frac{\beta_b}{1 + \frac{n_a}{N_{ao}}} \left(\frac{n_b}{N_{bo}} \right) \right\} \] (6.16)

\[\Delta *F_{ba} = a_{ba} F_{bo} \left\{ a_{ba} \left(\frac{n_b}{N_{bo}} \right) + \frac{\beta_a}{1 + \frac{n_b}{N_{bo}}} \left(\frac{n_a}{N_{ao}} \right) \right\} \] (6.17)

The general perturbation equations for ^{13}C and ^{14}C are analogous to those for carbon-total (equations (5.3)) except that the external carbon-total sources γ_a and γ_b are modified by multiplication respectively by the (generally time dependent) isotopic ratios, $R_i \gamma_i$ ($i = a, b$), which are weighted means of the isotopic ratios for the various individual sources. Also, although no radioactive source appears in the perturbation equations because the production rate, $*T_{th}$, has been assumed constant, radioactive decay terms appear as perturbations of the general terms, $*\lambda N_i$. Thus:

\[\frac{d *n_a}{dt} = \Delta *F_{ba} - \Delta *F_{ab} + R_{3a} \gamma_a - *\lambda *n_a \] (6.18)

\[\frac{d *n_b}{dt} = \Delta *F_{ab} - \Delta *F_{ba} + R_{3b} \gamma_b - *\lambda *n_b \] (6.19)

Substitution of the expression for $\Delta *F_{ab}$ and $\Delta *F_{ba}$ (equations (6.16) and (6.17)) leads to equations which contain terms in both the n_i and $*n_i$. These equations are quite complicated, and as an aid in identifying terms in the n_i and $*n_i$, I will again introduce perturbation transfer coefficients, k_{ij}, as was done for carbon-total. The expressions for the $d*n_i/dt$ then take the general form (Keeling, 73b):

\[\frac{d}{dt} + *\lambda + *k_1 \frac{*n_a}{*n_b} \right\} \] (6.19)

where the internal isotopic processes are represented on the left side of the equality sign, and the external source terms in γ_i and the terms in carbon-total, n_i, are on the right side. The terms, $*k_{ij}$, are perturbation transfer co-
coefficients for rare isotopic carbon analogous to the terms, \(k_i \), of equation (5.5) for carbon-total. The factors \(k_9' \) and \(k_{10}' \) are special functions of steady state parameters and the perturbation factors, \(\beta_i \) and \(\beta_i' \) as explained below. Since solution for the \(n_i \) in terms of the \(\gamma_i \) are obtained by solving the carbon-total equations (5.4), the terms, \(k_9' n_b \) and \(k_{10}' n_a \), may be regarded as representing external sources with respect to isotopic exchange. Since they are not true sources, I will call them "virtual sources". The proportionality factors, \(k_9' \) and \(k_{10}' \) (or \(k_i' \) in general), are designated with primes to indicate that they have a different significance than the transfer coefficients, \(k_{ij} \), and the related perturbation coefficients, \(k_i \) and \(k_{ij} \).

Comparing equations (6.18) with (6.19) after \(\Delta^* F_{ab} \) and \(\Delta^* F_{ba} \) in equations (6.18) have been replaced according to equations (6.16) and (6.17), we obtain:

\[
\begin{align*}
\ast k_1 &= \frac{\alpha_{ba} F_{bo} \phi_{ba}}{N_{bo}} \\
\ast k_2 &= \frac{\alpha_{ab} F_{ab} \phi_{ab}}{N_{ao}} \\
\end{align*}
\]

\[
\begin{align*}
k_9' &= \frac{\alpha_{ab} R_{ao} F_{bo}}{N_{bo}} \left(\frac{1 + n_a/N_{ao}}{1 + n_a/N_{bo}} \right) \\
k_{10}' &= \frac{\alpha_{ab} R_{ao} F_{bo}}{N_{ao}} \left(\frac{1 + n_a/N_{ao}}{1 + n_b/N_{bo}} \right)
\end{align*}
\]

where:

\[
\phi_{ab} = \frac{1 + \beta_a (n_a/N_{ao}) + \beta_b' (n_b/N_{bo})}{1 + (n_a/N_{ao})}
\]

\[
\phi_{ba} = \frac{1 + \beta_a' (n_a/N_{ao}) + \beta_b (n_b/N_{bo})}{1 + (n_b/N_{bo})}
\]

The existence of the factors \(1 + n_i/N_{io} \) in the expressions for \(\ast k_1, \ast k_2, k_9' \) and \(k_{10}' \) and the possibility that any or all of the \(\beta_i \) and \(\beta_i' \) are functions of the \(n_i \) signify that these equations are non-linear and cannot be solved by the use of Laplace transforms or any other exact analytical method.

For small perturbations in which second and higher order terms in \(n_i \) can be neglected, the \(k_i, \beta_i, \beta_i' \) and \(R_{\gamma_i} \) become constants and the \(\phi_{io} \) are unity. In this case equations (6.20) and (6.21) simplify to:

\[
\begin{align*}
\ast k_1 &= \alpha_{ba} k_{ba} \\
\ast k_2 &= \alpha_{ab} k_{ab}
\end{align*}
\]

\[
\begin{align*}
k_9' &= \alpha_{ab} k_{ba} R_{ao} \left[\beta_b' + (1 - \beta_{bo}) (1 - \Lambda_o) \right] \\
k_{10}' &= \alpha_{ab} k_{ab} R_{ao} \left[(1 - \beta_{ao}) + \beta_{ao}' (1 - \Lambda_o) \right]
\end{align*}
\]

where \(\beta_{io} \) and \(\beta_{io}' \) denote the first terms in the expansion (4.14). Substitution of these simplified expressions for the \(\ast k_i \) and \(k_i' \) into equations (6.19) leads to linear differential equations. From these equations Laplace transforms can be derived analogous to equations (5.5) for carbon-total.

For this linear case, in matrix notation, and with \(\ast n_b \) preceding \(\ast n_a \), the transforms of equation (6.19) take the form:

\[
\begin{bmatrix}
s + \ast \lambda + \ast k_1 & -\ast k_2 \\
-\ast k_1 & s + \ast \lambda + \ast k_2
\end{bmatrix}
\begin{bmatrix}
\ast \tilde{b} \\
\ast \tilde{a}
\end{bmatrix}
= \begin{bmatrix}
R_{\gamma_b} \tilde{\gamma}_b \\
R_{\gamma_a} \tilde{\gamma}_a
\end{bmatrix}
\]

\[
\begin{bmatrix}
k_9' & -k_{10}' \\
-k_9' & k_{10}'
\end{bmatrix}
\begin{bmatrix}
\tilde{b} \\
\tilde{a}
\end{bmatrix}
\]
The solutions for the \(n_i \) (cf. equation (5.8)) are:

\[
\begin{aligned}
\tilde{n}_b &= \frac{R_{\gamma_a} \tilde{\gamma}_a (s + *k_2) + R_{\gamma_b} \tilde{\gamma}_b (s + *\lambda + *k_2)}{(s + *\lambda)(s + *\lambda + *k_1 + *k_2)} \times \\
&\quad - \frac{k_{10} \tilde{n}_a + k_9 \tilde{n}_b}{s + *\lambda + *k_1 + *k_2} \\
&\quad + \frac{R_{\gamma_a} \tilde{\gamma}_a (s + *\lambda + *k_1) + R_{\gamma_b} \tilde{\gamma}_b (s + *k_1 + *k_2)}{(s + *\lambda)(s + *\lambda + *k_1 + *k_2)} \times \\
&\quad \frac{k_{10} \tilde{n}_a - k_9 \tilde{n}_b}{s + *\lambda + *k_1 + *k_2} \\
\end{aligned}
\]

(6.28)

where terms related to external rare isotopic sources, \(R_{\gamma b} \), are for clarity separated from terms which arise from the virtual sources \(k_{10}' \tilde{n}_a \) and \(k_9' \tilde{n}_b \).

6.3 Derivation of the Suess Effect and Stuiver approximation

For the linear case just considered, the solutions for the \(n_i \) and \(*n_i \) may be obtained for arbitrary inputs, \(\gamma_a \) and \(\gamma_b \), by the use of partial fractions and convolution integrals as described by Keeling (73b). The theoretical Suess Effects for each reservoir and rare isotope are obtained by substituting into the expression:

\[
S_i = \frac{1}{N_i} \left(\frac{*n_i}{R_{io}} - n_i \right)
\]

(6.29)

which derives from equations (1.7) and (1.17).

To investigate how this general linear case can be simplified to yield the Stuiver approximation, let us first make the simplification that the only external source is industrial CO2, so that:

\[
\begin{aligned}
\gamma_a &= \gamma_f \\
R_{\gamma a} &= R_f \\
\gamma_b &= 0
\end{aligned}
\]

(6.30)

Also, let us obtain an expression for isotopic perturbations in terms of the isotopic label, \(\xi \). Taking Laplace transforms of equation (1.18):

\[
R_{ao} \tilde{\xi}_a = \frac{(R_f - R_{ao}) \tilde{\gamma}_f (s + k_{ba})}{s(s + k_{ba} + k_{ab})}.
\]

(6.34)

Hence, simplifying by means of the first of equations (3.19):

\[
R_{ao} \tilde{\xi}_a = (R_f - R_{ao}) \tilde{n}_a'.
\]

(6.35)

This equation is equivalent in all respects to equation (3.18) applied to the atmospheric reservoir and thus leads to the Stuiver approximation.

But we are now able to compare this simplified result with the alternative linear case in which isotopic fractionation and radioactive decay are not neglected, since these phenomena are taken fully into consideration in equation (6.32). It is even possible for us to examine the influence of non-linear features neglected in the linear model because of the relative ease in obtaining numerical approximations for the \(n_i \) and \(*n_i \) using equations (5.6) and (6.25), and then solving equation (6.29).

On the other hand, the model just considered, even without approximation, does not produce realistic predictions of the Suess Effect, because the carbon cycle
cannot be successfully simplified to two reservoirs. Therefore, further examination of the Stuiver approximation will be postponed until a model has been developed which couples the atmosphere with both the land biosphere and the oceans. This is done in Sections 7 through 9, below.

7. Atmosphere-ocean exchange model

7.1 Relationships for carbon-total

The general formulation developed in section 6, above, may be applied to any pair of reservoirs in which the interreservoir exchange of carbon-total depends principally on the abundance of carbon in one or both of the reservoirs. In the case of atmosphere-surface ocean exchange, the correct functional form of the dependence is known because the fluxes between reservoirs respond to known laws of gas exchange and chemical thermodynamics. In this section I will show that at the air-sea surface the perturbation equations (5.4) for carbon-total simplify to:

$$\frac{d}{dt} + k_{ma} n_m - k_{na} n_a = \gamma_m$$

$$\frac{d}{dt} + k_{ma} x \, n_m - k_{na} x \, n_a = \gamma_m$$

(7.1)

where "m", for the ocean surface "mixed" layer, replaces the general symbol "b". Perturbation equations will subsequently be derived for rare isotopic carbon, based on the same principals by which equations (7.1) were obtained.

The factor, ξ, which I will call the "CO2 evasion factor" is analogous to the perturbation factor, β, of equation (5.4). But unlike the case of the land biosphere in which the mechanism of response to a CO2 increase is highly uncertain and the magnitudes of the βi are not known beforehand, the factor, ξ, is a known function of the chemical properties of sea water (Bacastow, 73, 79). As was assumed for the βs of the previous section, ξ can be represented by a power series in the perturbation, nm, i.e.:

$$\xi = \xi_o + \xi_1 \left(\frac{n_m}{N_{mo}} \right) + \xi_2 \left(\frac{n_m}{N_{mo}} \right)^2 + ...$$

(7.2)

where the ξi are known constants.

The flux of CO2 gas across the air-sea interface is a turbulent phenomenon in which processes within a thin oceanic boundary layer are believed to be rate determining (Broecker, 78). At equilibrium, the laws of thermodynamics require that the partial pressures of CO2 gas in the two phases be equal, while, for departures from equilibrium, kinetic considerations strongly suggest that the net flux is proportional to the difference in partial pressure (Skirrow, 75, p.135). These relations are equivalent to assuming that the one-way flux in each direction is proportional to the CO2 pressure in the phase from which that flux originates.

The rate of CO2 gas exchange cannot be predicted by any existing theory, and it is not even known with certainty how the rate constant varies with wind, wave conditions, or temperature. Nevertheless it seems reasonable to assume that the global averages of these physical properties have not varied markedly during the industrial era. Therefore I will postulate that the global average flux, Fm, from the atmosphere to the ocean and the return flux, Fma, are given by the simple proportionalities:

$$F_{am} = \frac{K_{am}}{P_a}$$

$$F_{ma} = \frac{K_{ma}}{P_m}$$

(7.3)

where Kam and Kma denote time-independent gas transfer coefficients, and Pt (with steady state value Pto) denotes the average partial pressure of CO2 as the boundary of reservoir i where gas exchange occurs.

For compatibility with the previously derived exchange equations, let us define steady state exchange coefficients, kam and kma, by the expressions:

$$F_{mo} = k_{am} N_{oa}$$

$$F_{mo} = k_{ma} N_{mo}$$

(7.4)

where Fmo is the value of Fam and Fma (which must be the same) at steady state. If follows that:

$$F_{am} = k_{am} N_{oa}$$

$$F_{ma} = k_{ma} N_{mo}$$

(7.5)

7.2 Chemical relationships of carbonic acid and their influence on the air-sea exchange of carbon-total

In the atmosphere since the laws of gas mixtures apply, and since the atmosphere is well mixed over time scales of interest, the average CO2 partial pressure, Pa, is proportional to the global CO2 abundance, Na, so that:

$$\frac{P_a}{P_{ao}} = \frac{N_a}{N_{ao}}$$

(7.7)

Therefore:

$$F_{am} = k_{am} N_a$$

(7.8)

For surface ocean water, even if spatial variations are neglected, the concentration of carbon-total is not in general proportional to the partial pressure of CO2. To relate the partial pressure, Pm, to the abundance, Nm, it is necessary to consider explicitly the chemical reactions which occur between dissolved CO2 gas and its principal dissociation products. The chemical species in solution are related by the chemical reaction equations:

$$\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HCO}_3^-$$

(7.9)
\[\text{HCO}_3^- \rightleftharpoons \text{H}^+ + \text{CO}_3^{2-} \quad (7.10) \]

If CO$_2$ is added or removed from sea water, the amount in solution almost instantaneously readjusts with the ions of bicarbonate, HCO$_3^-$, and carbonate, CO$_3^{2-}$, to preserve constant the ratios:

\[K_1 = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{CO}_2]} \quad (7.11) \]

\[K_2 = \frac{[\text{H}^+][\text{CO}_3^{2-}]}{[\text{HCO}_3^-]} \quad (7.12) \]

where brackets denote concentrations in any convenient units, say, moles per 1000 g of sea water; and [H$^+$] stands for the concentration of hydrogen ions.

In addition, the partial pressure, denoted in general by P_{CO_2}, remains proportional to the concentration of dissolved CO$_2$ so that:

\[K_0 = \frac{[\text{CO}_2]}{P_{\text{CO}_2}} \quad (7.13) \]

where K_0 is the gas solubility coefficient.

The quantities K_0, K_1, and K_2 are thermodynamic equilibrium quotients which are invariant to CO$_2$ exchange at the sea surface, but which vary with temperature and the total salt content (salinity) of sea water. Because the equations involving these factors will be put to use only in connection with CO$_2$ exchange over a moderate range in [H$^+$], it is not necessary to consider other dissolved inorganic species such as H$_2$CO$_3$, or ion pairs of the dissociation products of H$_2$CO$_3$ with sea salts such as NaCO$_3^-$ or MgHCO$_3^+$. To avoid specifying these and yet to allow for their influence on the conservation of mass, the symbol [CO$_2$] will be understood to represent the concentration of inorganic carbon dissolved in sea water is then the sum:

\[\Sigma C = [\text{CO}_2] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}] \quad (7.14) \]

Using equations (7.11), (7.12), and (7.13) to eliminate [HCO$_3^-$] and [CO$_3^{2-}$] from equation (7.14), we obtain the relation:

\[P_{\text{CO}_2} = \left[K_0 + \frac{K_0K_1}{[\text{H}^+]} + \frac{K_0K_1K_2}{[\text{H}^+]^2} \right]^{-1} \Sigma C. \quad (7.15) \]

In applying this equation to reservoir models, we shall assume that spatial variability in chemical parameters can be neglected, an assumption which has not been tested, but appears reasonable as long as we are dealing only with perturbations. Let $[\text{H}^+]_o$ refer to the hydrogen ion concentration for average preindustrial surface sea water. We obtain then the relationship:

\[\frac{P_m}{P_{\text{mo}}} = \phi_m \frac{N_m}{N_{\text{mo}}} \quad (7.16) \]

where N_m (with steady state value N_{mo}) denotes the amount of dissolved inorganic carbon in surface ocean water and:

\[\phi_m = \frac{1 + K_1/[\text{H}^+]_o + K_1K_2/[\text{H}^+]_o^2}{1 + K_1/[\text{H}^+] + K_1K_2/[\text{H}^+]^2} \quad (7.17) \]

Since [H$^+$] varies with ΣC, ϕ_m is a function of N_m. Equation (7.16) can therefore be expanded in a Taylor's Series in the neighborhood of N_{mo}:

\[\frac{P_m}{P_{\text{mo}}} = 1 + \xi_o \frac{n_m}{N_{\text{mo}}} + \xi_1 \left(\frac{n_m}{N_{\text{mo}}} \right)^2 + \ldots \quad (7.18) \]

Or, according to equation (7.2):

\[\frac{P_m}{P_{\text{mo}}} = 1 + \xi \frac{n_m}{N_{\text{mo}}} \]

It follows directly that:

\[\phi_m = \frac{1 + \xi n_m/N_{\text{mo}}}{1 + n_m/N_{\text{mo}}} \quad (7.20) \]

Thus ϕ_m has the same functional form as the general perturbation function, ϕ_{ij} of equation (6.15) for the case where the transfer rate is dependent only in the abundance of carbon in the donor reservoir ($\beta_j' = 0$).

Before equations (7.15) and (7.17) are useful to evaluate the CO$_2$ evasion factor, ξ, the hydrogen ion concentration, [H$^+$] must be determined as a function of ΣC. Several methods for doing so have been described. Bolin and Eriksson (59) and Broecker et al. (71) developed equations which essentially found the term, ξ, of equation (7.18) for any given fixed set of values for all of the relevant chemical parameters of sea water including ΣC. By dropping small terms in their equations, they were.
able to obtain expressions which could be solved directly for \([\text{H}^+\]) and \(\xi_p\). Keeling (73b) Bacastow and Keeling (73) using iterative procedures without approximation, and Revelle and Suess (77) by graphic methods, explicitly considered the variation in \(\xi\) with \(\Sigma C\), equivalent to determining all significant terms in the power series of equation (7.18). For the present discussion, it is sufficient to assume that the coefficients \(\xi_0, \xi_1, \xi_2, \ldots\) are known so that \(\xi\) can be evaluated as needed during a step-wise numerical computation of the model equations, or can be declared a constant if a linear approximation is used.

7.3 Perturbations of the exchange fluxes for carbon-total

If we eliminate \(P_m\) between equations (7.6) and (7.16) we find that the flux of carbon-total from the surface ocean layer to the atmosphere is given in terms of \(\phi_m\) by the expression:

\[
F_{ma} = k_{ma} \phi_m N_m. \tag{7.21}
\]

The departures in the transfer rates, \(F_{am}\) and \(F_{ma}\), from their preindustrial steady state value, \(F_{mao}\), are found directly from equations (7.8) and (7.21):

\[
\Delta F_{am} = k_{am} (N_a - N_{ao}). \tag{7.22}
\]

whence:

\[
\Delta F_{ma} = k_{ma} n_a. \tag{7.23}
\]

similarly:

\[
\Delta F_{ma} = k_{ma} (\phi_m N_m - N_{mo}). \tag{7.24}
\]

In terms of the CO\(_2\) evasion factor, \(\xi\), (cf. equation (7.20)) this latter equation simplifies to:

\[
\Delta F_{ma} = k_{ma} \xi n_m. \tag{7.25}
\]

Substituting for \(\Delta F_{am}\) and \(\Delta F_{ma}\) in the general two reservoir equations (5.3) with \(\text{m}^\prime\) replacing \(\text{b}\), we obtain the carbon-total perturbation equations (7.1).

7.4 Relationships for rare isotopic carbon

For the rare isotopes the relations between CO\(_2\) partial pressure and total dissolved inorganic carbon depend on the dissociation constants of carbonic acid, as in the case of carbon-total. With due regard to isotopic fractionation (cf. equation (7.16)):

\[
*P_m = *\phi_m *N_m \quad \text{and} \quad *P_{ma} = *\phi_m *N_{ma}. \tag{7.26}
\]

where (cf. equations (7.17)):

\[
*P_{ma} = 1 + *K_1/[H^+]_o + *K_1 *K_2/[H^+]_o^2 \frac{1 + *K_1/[H^+] + *K_1 *K_2/[H^+]^2}{1 + *K_1/[H^+] + *K_1 *K_2/[H^+]^2} \tag{7.27}
\]

The dissociation quotients \(*K_1\) and \(*K_2\) differ up to several per mil from \(K_1\) and \(K_2\) (Emrich, 70; Mook, 74) but the quotient: \(*\phi_m\), is equal to \(\phi_m\) within one part in 10\(^4\) for the most extreme changes possible from industrial CO\(_2\) uptake in the next few centuries (Keeling, 77). The distinction between \(*\phi_m\) and \(\phi_m\) will therefore be maintained in the derivation of exchange equations only for analytical clarity.

Let us define an isotopic CO\(_2\) evasion factor, \(\xi\), by the relation:

\[
*\phi_m = \frac{1 + \xi N_m/N_{mo}}{1 + n_m/N_{mo}}. \tag{7.28}
\]

For applications of interest, \(\xi\) differs from its carbon-total counterpart, \(\xi_p\), by no more than 1 in 10\(^4\), and thus is also numerically indistinguishable from its counterpart, \(\xi\), as was \(*\phi_m\) from \(\phi_m\).

The dependence of \(*\phi_m\) on \(n_m\) rather than on \(*n_m\) arises because the hydrogen ion concentration, \([\text{H}^+]\), depends on carbon-total. The concentration is independent of isotopic composition except for a very small effect arising from the variable contribution of 13C to carbon-total.

The transfers of rare isotopic carbon involve additional kinetic fractionations which modify the gas transfer coefficients, \(\kappa_{am}\) and \(\kappa_{ma}\), by factors which I will denote by \(\kappa_{am}^\prime\) and \(\kappa_{ma}^\prime\). Thus:

\[
*F_{am} = *\alpha_{am} \kappa_{am} \cdot *P_{am}, \tag{7.29}
\]

\[
*F_{ma} = *\alpha_{ma} \kappa_{ma} \cdot *P_{ma}. \tag{7.30}
\]

In terms of the corresponding fluxes of carbon-total (equation (7.3)):

\[
*F_{am} = *\alpha_{am} \cdot (*P_{ma}/P_a) F_{am}, \tag{7.31}
\]

\[
*F_{ma} = *\alpha_{ma} \cdot (*P_{ma}/P_m) F_{ma}. \tag{7.32}
\]

Since the partial pressure and abundance of atmospheric CO\(_2\) are proportional for all isotopic species:

\[
*P_a/P_a = *N_a/N_a \tag{7.33}
\]

so that:

\[
*F_{am} = *\alpha_{am} \cdot (*N_a/N_a) F_{am} \tag{7.34}
\]

and since equation (7.8) holds:

\[
*F_{am} = *\alpha_{am} k_{am} *N_a \tag{7.35}
\]
The Suess Effect

where the prime on \(\alpha_{am}'\) is dropped because the fractionation factor is the same whether defined with respect to partial pressure or carbon abundance.

For surface ocean water, the relationships are more complicated. We shall make use of the factors, \(\phi_m\) and \(\xi\), to establish the correct functional dependence of isotopic flux on the perturbation masses, \(n_m\) and \(n_o\).

Eliminating \(\phi_P\) between equations (7.26) and (7.32):

\[
\phi_{ma} = \alpha_{ma}' \phi_m \left(\frac{\xi m \phi_m}{N_m \phi_m} \right) F_m. \tag{7.36}
\]

Let us introduce the factor \(\alpha_{ma}\) to denote the overall isotopic fractionation between atmospheric CO2 and total dissolved inorganic carbon in surface ocean water at steady state. Thus, by definition

\[
\alpha_{ma} = \alpha_{ma}' \frac{P_m}{N_m \phi_m}. \tag{7.37}
\]

Eliminating \(\alpha_{ma}'\) between the last two equations:

\[
\phi_{ma} = \alpha_{ma} \frac{\phi_m}{N_m \phi_m} \left(\frac{\phi_m}{P_m} \right) F_m. \tag{7.38}
\]

and hence eliminating \(P_m F_m / (N_m P_m)\) via equation (7.6):

\[
\phi_{ma} = \alpha_{ma} k_m \phi_m N_m \tag{7.39}
\]

analogous to equation (7.21) for carbon-total.

The departures of the transfer rates, \(\phi_{am}\) and \(\phi_{ma}\), from their preindustrial steady state values are obtained directly from equations (7.35) and (7.39):

\[
\Delta \phi_{am} = \alpha_{am} k_m (N_a - N_{ao}) \tag{7.40}
\]

\[
= \alpha_{am} k_m n_a. \tag{7.41}
\]

\[
\Delta \phi_{ma} = \alpha_{ma} k_m (\phi_m N_m - N_{ma}) \tag{7.42}
\]

\[
= \alpha_{ma} k_m [\phi_m n_m + N_{ma} (\phi_m - 1)]. \tag{7.43}
\]

But from equation (7.28) it can be shown that:

\[
\phi_m - 1 = \frac{(\xi - 1) n_m / N_{ma}}{1 + n_m / N_{ma}}. \tag{7.44}
\]

Therefore:

\[
\Delta \phi_{ma} = \alpha_{ma} k_m \frac{R_{ma} (\xi - 1) n_m}{1 + n_m / N_{ma}}. \tag{7.45}
\]

In terms of the steady state carbon-total flux, \(F_m\) (cf. equations (7.4):

\[
\Delta \phi_{ma} = \alpha_{ma} R_m \frac{\phi_m (n_m / N_{ma})}{1 + n_m / N_{ma}}. \tag{7.46}
\]

This expression corresponds to the general two reservoir expression (equation (6.17) except that subscript \(m\) replaces \(b\), \(\xi\) replaces \(\xi\), the direct analogue of \(\beta_m\) and \(\phi_m\) replaces \(\phi_m\), the direct analogue of \(\phi_{ma}\). Also \(\beta_m\) is zero since the evasion of CO2 from sea water is independent of the amount of CO2 in the atmosphere.

The substitutions of \(\xi\) for \(\xi\) and \(\phi_m\) for \(\phi_m\) arise because the general isotopic postulate, analogous to equation (6.9):

\[
\phi_{ma} = \alpha_{ma} R_m \phi_{ma}. \tag{7.48}
\]

is not exactly fulfilled by equation (7.39). Instead, consistent with equations (7.21) and (7.39):

\[
\phi_{ma} = \alpha_{ma} R_m \frac{(\phi_m / \phi_m) F_m}{1 + n_m / N_{ma}}. \tag{7.49}
\]

Since \(\phi_m / \phi_m\) differs very slightly from unity, as noted earlier, this quotient can be neglected without introducing noticeable error into the calculations. Thus the general formulism of section 6 is adequate for practical applications.

By subtracting \(\xi - 1\) from both sides of equation (7.44) it can be shown that:

\[
\xi - 1 = \frac{(\xi - 1) n_m / N_{ma}}{1 + n_m / N_{ma}}. \tag{7.50}
\]

Hence the perturbation flux \(F_{ma}\) may also be written:

\[
\Delta F_{ma} = \frac{\alpha_{ma} k_m}{N_{ma}} [R_{ma} (\xi - \phi_m) n_m + \phi_m n_m]. \tag{7.51}
\]

where \(F_{ma}\) is replaced according to the first of equations (7.4). Equation (7.51) is equivalent to equation (6.49) of Keeling (73b) if dissolved organic carbon, allowed for in
his expression, is neglected, and we note that *\(\phi_m \) is equivalent to the quotient, \(\phi / \phi_o \), in his equation.

7.5 Solving the model equations

In terms of the perturbation fluxes, \(F_{am} \) and \(F_{ma} \), the equations for the perturbations in \(N_a \) and \(N_m \) are given in general by equations (5.3) with "m" replacing "b", i.e.:

\[
\begin{align*}
\frac{d n_a}{dt} &= \Delta F_{ma} - \Delta F_{am} + \gamma_a, \\
\frac{d n_m}{dt} &= \Delta F_{am} - \Delta F_{ma} + \gamma_m
\end{align*}
\]
(7.52)

where \(\gamma_a \) and \(\gamma_m \) denote the combined external sources of carbon-total for the two reservoirs. A source term for the ocean surface layer, \(\gamma_m \), is included for completeness. For example, if we were to investigate the proposal of Marchetti (76) to inject industrial CO2 into the oceans this might require a calculation in which \(\gamma_m \) was non-zero.

In later applications of these equations, it will prove convenient to introduce perturbation terms for coefficients similar to those of sections 5 and 6. Thus (cf. Keeling, 73b) equations (7.52) will now be rewritten:

\[
\begin{align*}
\frac{d n_a}{dt} + k_3 n_a - k_4 n_m &= \gamma_a, \\
\frac{d n_m}{dt} + k_4 n_m - k_3 n_a &= \gamma_m.
\end{align*}
\]
(7.53)

Similarly for rare isotopic carbon:

\[
\begin{align*}
\frac{d n_a}{dt} + k_3 n_a - k_4 n_m &= R_{3'a} \gamma_a, \\
\frac{d n_m}{dt} + k_4 n_m - k_3 n_a &= R_{3'm} \gamma_m
\end{align*}
\]
(7.54)

whereas, consistent with the notation of equation (6.19):

\[
\begin{align*}
\frac{d n_a}{dt} = *\lambda + *k_3 n_a - *k_4 n_m &= R_{3'a} \gamma_a + k_7 \gamma_m, \\
\frac{d n_m}{dt} = *\lambda + *k_4 n_m - *k_3 n_a &= R_{3'm} \gamma_m - k_7 n_a
\end{align*}
\]
(7.55)

In this last expression a virtual source coefficient \(k_7 \) has been introduced analogous to the use of \(k_9' \) and \(k_{10}' \) in equations (6.19). Matching terms after substituting for the perturbation fluxes according to equations (7.23), (7.25), (7.41) and (7.51) it follows that:

\[
\begin{align*}
k_3 &= k_{am} \tag{7.56} \\
k_4 &= \xi k_{ma} \tag{7.57}
\end{align*}
\]

The solutions for the \(n_i \) (cf. equation (5.8)) are:

\[
\begin{align*}
\tilde{n}_a &= \frac{\gamma_a (s + k_4) + \gamma_m (k_4)}{s (s + k_3 + k_4)} \\
\tilde{n}_m &= \frac{\gamma_a (k_3) + \gamma_m (s + k_3)}{s (s + k_3 + k_4)}
\end{align*}
\]
(7.61)

while for rare isotopic carbon (cf. equation (6.28)):

\[
\begin{align*}
\tilde{n}_a &= \frac{R_{3'a} \tilde{n}_a (s + *\lambda + *k_4) + R_{3'm} \tilde{n}_m (*k_4)}{(s + *\lambda) (s + *\lambda + *k_3 + *k_4)} + \frac{-k_7 \gamma_m}{s + *\lambda + *k_3 + *k_4} \\
\tilde{n}_m &= \frac{R_{3'm} \tilde{n}_m (*k_3) + R_{3'm} \tilde{n}_m (s + *\lambda + *k_3)}{(s + *\lambda) (s + *\lambda + *k_3 + *k_4)} + \frac{k_7 \gamma_m}{s + *\lambda + *k_3 + *k_4}
\end{align*}
\]
(7.62)

The theoretical Suess Effect for the atmosphere and surface ocean can be derived from the \(n_i \) and \(*n_i \) by the procedures discussed in section 6.

But since neither this model nor that of section 6 adequately portrays the perturbed carbon cycle as a whole, it is not worthwhile deriving these expressions. Rather, we shall, in the next section, take up the problem of modeling transport of carbon within the oceans. Then in section 9 we will consider a composite model with four reservoirs, as the basis for computing the Suess Effect realistically.

8. Vertical exchange of carbon within the oceans

8.1 General remarks

The vertical transport of carbon within the oceans proceeds by both water motion (advection and eddy diffusion) and by gravitational settling of particles,
The Suess Effect

That the bottom of the surface layer is deep enough that this point be specified. It will be understood, however, that the gravitational flux on properties of ocean water will not, at this point, be specified. The latter flux is thus assumed to be proportional to the mass of carbon-total in the ocean surface layer and therefore enters into the relationships for transient adjustment arising from CO₂ exchange at the air-sea boundary.

Within the published literature the gravitational transport of rare isotopic carbon in response to industrial CO₂ has been considered only in terms of a two reservoir model of the oceans consisting of surface and deep ocean layers (Bacastow, 73; Keeling, 73b). Because the influence of gravitational flux is found in these models to be a small effect, it does not seem worthwhile here to carry out a detailed analysis for more complex models of subsurface oceanic transport. Nevertheless, in so far as practicable, I will develop the formalism in a manner which can be extended to such models in case this proves to be desirable in the future.

To express water transport and the gravitational flux of carbon in the framework of a two reservoir model, let F_g denote the time-dependent gravitational flux of carbon-total transported downward from the surface layer into the water immediately below, and let k_{md} / N_m denote the corresponding downward flux transported by sea water, where k_{md} is a time-invariant transfer coefficient. The latter flux is thus assumed to be proportional to the mass of carbon-total in the ocean surface layer. An assumption of proportionality is reasonable when the mechanism of transport is conveyance of a chemical solution of uniform composition within the surface layer. The dependence of the gravitational flux on properties of ocean water will not, at this point, be specified. It will be understood, however, that the bottom of the surface layer is deep enough that all of the gravitational flux originates in this layer.

Let F_{md} denote the time-dependent downward flux of carbon-total at the boundary between surface and subsurface water by both transport mechanisms. Then:

$$ F_{md} = k_{md} N_m + F_g $$

(8.1)

where N_d denotes all of the oceanic carbon-total below the surface layer, and where k_{dm}, like k_{md}, is a time-invariant transfer coefficient. In contrast to k_{md}, however, there is little physical basis to justify constancy of k_{dm} during a perturbation in carbon abundance. The plausibility of equation (8.2) needs, therefore, to be examined.

8.2 The two reservoir vertical exchange model in perspective

Let W_m denote the mass of water in the ocean surface layer and W_d the entire mass of water laying below that layer. In a two reservoir model the products, $k_{md} W_m$ and $k_{dm} W_d$, express respectively the downward and upward flux of water across the boundary dividing surface and subsurface waters. To preserve continuity of water within the two layers:

$$ k_{md} W_m = k_{dm} W_d. $$

(8.3)

This equation essentially defines the transfer coefficient, k_{dm}, in terms of k_{md} and the ratio of water volumes.

To obtain some impression of the shortcoming of this approach, let us briefly consider an alternative model in which the water below a surface ocean layer having always the same dimensions is further differentiated vertically by subdivision into any number of layers, u, v, and so on, in the descending direction (Fig. 5). In the limit of a large number of such layers, such a subdivided model approaches the vertical diffusion model of Oeschger et al. (75). A small number of reservoirs may, however, also be of interest. For example, Broecker (66) divided the upper 750 meters of the non-polar ocean into five equally spaced layers overlaying a single deep ocean reservoir in order to portray the diffusive character of the main oceanic thermocline.

![Fig. 5. Multiple reservoir model of the vertical exchange of tracers in the oceans. Relationships are shown only for exchange of water. Tracers are assumed to be carried by the water in proportion to their concentrations in the donor reservoirs.](image-url)
Let \(N_u, N_v \), etc., denote the amount of carbon-total and \(W_u, W_v \), etc., the masses of water, in each subsurface layer. These quantities are related to the deep water variables previously defined by:

\[
N_d = N_u + N_v + \ldots \quad (8.4)
\]

\[
W_d = W_u + W_v + \ldots \quad (8.5)
\]

where the sums are over all subsurface layers.

Let \(k_{ij}W_i \) and \(k_{ij}W_j \) denote, respectively, the downward and upward fluxes of water between any pair of adjacent oceanic reservoirs \(i \) and \(j \). The fluxes of water at the base of the surface layer in the two reservoir and multiple reservoir models are the same if we assume:

\[
k_{md} W_m = k_{mu} W_m \quad \text{and} \quad k_{dm} W_d = k_{um} W_u \quad (8.6)
\]

\[
k_{dm} N_d = k_{um} N_u \quad (8.8)
\]

which, in view of equation (8.7) is equivalent to:

\[
N_u/W_u = N_d/W_d \quad (8.9)
\]

i.e. the average concentration of carbon-total would have to be the same in reservoir \(u \) as in the entire subsurface ocean.

The presence of a gravitational flux requires, however, that the concentration of carbon-total increase with depth, and therefore equation (8.9) is not a reasonable condition to impose on a comparison between models. Furthermore, the gravitational flux is a physical quantity capable of direct measurements, and therefore its steady-state value, \(F_{Gd} \), should be approximately the same for all models having the same surface layer conditions. In order that the steady-state distribution of carbon-total be satisfied under these circumstances, the upward and downward fluxes of water at the base of the surface layer must generally increase in the model if the number of subsurface reservoirs increases. Therefore, models with different numbers of subsurface reservoirs cannot be perfectly matched at the lower boundary of the surface layer.

Matching is likely to be still less perfect if the surface layers of the models are made dissimilar. For example, if the surface layer is made several hundred meters deep, as in the two reservoir models of Keeling (73) and Keeling and Bacastow (77), part of the gravitational flux, \(F_{Gd} \), is lost within that layer. Both terms of the right side of equation (8.1) then differ in magnitude from corresponding terms for a multiple reservoir model with a shallow surface layer.

Discrepancies between global carbon cycle models having differently subdivided oceanic reservoirs may not be serious, however, if the magnitudes of the transfer coefficients are based on the same assumed pre-industrial spacial distributions of chemical concentrations. In particular, the predictions of industrial \(\text{CO}_2 \) perturbations for surface ocean water and the land biosphere, are likely to be nearly the same, because the industrial perturbation originates in a reservoir remote from subsurface ocean waters while the surface ocean and biospheric reservoirs of interest are in close contact with the atmosphere. This point was investigated by Keeling and Bacastow (77) for the carbon-total fractions, \(r_i \), by comparing the predictions of the two reservoir model with the vertical diffusion model of Oeschger et al. (75) ignoring transport by the gravitational flux. Indeed, if the only carbon-total perturbation under consideration is an exponentially increasing input of industrial \(\text{CO}_2 \) to the atmosphere, a two reservoir model can be constructed which gives identical predictions of atmospheric, biospheric and total oceanic change to that of the vertical diffusion model, after meeting the above requirements regarding steady-state conditions. Thus, provided that details of the transport and storage of carbon within the oceans are not under investigation, a two reservoir oceanic model is a useful starting point for studies of the Suess Effect.

8.3 Exchange fluxes of carbon-total and rare isotopic carbon in relation to steady state

With the above concepts in mind we shall proceed to develop the equations for the two-reservoir model.

By analogy, with equations (8.1) and (8.2) the time-dependent isotopic fluxes are given by the expressions:

\[
*F_{md} = k_{md} *N_{m} + \alpha_{mg} R_{m} F_{G} \quad (8.10)
\]

\[
*F_{dm} = k_{dm} *N_{d} \quad (8.11)
\]

where the factor \(\alpha_{mg} \) allows for isotopic fractionation associated with the gravitational flux. Approximately 70% of the carbon in this flux is derived from sea water bicarbonate by the photosynthesis of marine plants (Broecker, 74, p. 11) which preferentially assimilate \(^{12}\text{C}\) by the order of 20%. The remaining 30%, also derived from sea water bicarbonate, is calcareous and aragonitic carbonate which is enriched in \(^{12}\text{C}\) only to a very small degree (ca. 1%) (Craig, 70; Kroopnick, 74, p. 213). The overall factor, \(\alpha_{mg} \), (see equation (10.36) and Table 2, below) is obtained as a weighted average of these two fractionations. No isotopic fractionation is to be expected in the transport of carbon by water motion since turbulence in this motion prevents the influence of
molecular scale forces which could affect one isotope differently than another.

At steady state the upward and downward fluxes for carbon-total are equal, i.e.:

$$F_{do} = k_{md} N_{mo} + F_{go}$$

$$= k_{dm} N_{do}$$

(8.12)

where F_{do} denotes the preindustrial (steady-state) value of F_{md} (or F_{dm}). For rare isotopic carbon at steady state:

$$k_{md} * N_{mo} + \alpha_{mg} R_{mo} F_{go} = k_{dm} * N_{do} + \lambda * N_{do}$$

(8.13)

where the term in λ provides for radiocarbon decay in the subsurface ocean layer, "d".

Consistent with equations (8.12) and (8.13), the magnitudes of the flux constants and of F_{go} may be expressed in terms of concentrations N_{mo}/W_{m}, N_{do}/W_{d}, and the isotopic ratios. Solving (8.12) for F_{go}, we find:

$$F_{go} = k_{dm} W_{d} \left(\frac{N_{do}}{W_{d}} - \frac{N_{mo}}{W_{m}} \right)$$

(8.14)

where the factor in parentheses is obtained by making use of equation (8.3). Equation (8.14) shows that the gravitational flux is balanced by a net transport proportional to the product of the water flux and the concentration difference between reservoirs.

Similarly, for rare isotopic carbon:

$$\alpha_{mg} R_{mo} F_{go} = k_{dm} W_{d} \left(\frac{*N_{do}}{W_{d}} - \frac{*N_{mo}}{W_{m}} \right) + \lambda * N_{do}$$

(8.15)

where due regard is given to isotopic fractionation and radioactive decay.

By eliminating F_{go} between equations (8.14) and (8.15), we obtain a relation similar to the general expressions (6.7):

$$\alpha_{md} R_{mo} - R_{do} = \lambda R_{do}/k_{dm}$$

$$= \lambda \alpha_{md} R_{mo}(k_{dm} + \lambda)$$

(8.16)

where:

$$\alpha_{md} = \alpha_{mg} \frac{N_{mo}}{W_{m}} N_{do} \left(1 - \alpha_{mg} \right)$$

(8.17)

is the apparent isotopic fractionation factor of deep water carbon relative to surface water owing to the downward flux of carbon by gravitational settling. (This term is the same as α_{dm} of Keeling (73b).) Equations (8.16) are useful to establish $13R_{do}/13R_{mo}$ or k_{dm} in the manner discussed after equation (6.7).

8.4 Perturbations of the exchange fluxes

Although there is as yet no direct evidence that the gravitational flux is perturbed by industrial CO2, this possibility will be considered in deriving perturbation equations to be prepared if such evidence is found in the future. Including such a provision also permits a check to be made on the sensitivity of the calculations to an assumption of constant flux.

Let us therefore assume that the gravitational flux, including both organic particles and biogenic carbonate, departs from its steady state value in a manner that can be expressed as a function of the amount of carbon-total in the ocean surface layer, i.e.:

$$F_{g} = f(n_{m}).$$

(8.18)

If F_{g} is expanded in a Taylor's series (cf. equation (4.2) in the neighborhood of F_{go}:

$$\Delta F_{g} = \beta_{g} F_{go} \frac{n_{m}}{N_{mo}}$$

(8.19)

where:

$$\beta_{g} = \beta_{g} + \beta_{g1} \left(\frac{n_{m}}{N_{mo}} \right) + \beta_{g2} \left(\frac{n_{m}}{N_{mo}} \right)^{2} + \ldots$$

(8.20)

The coefficients, β_{gi}, are constants derived from the expansion. The departure of the total downward flux, F_{md}, from its steady state value (cf. equation (8.1)) is:

$$\Delta F_{md} = k_{md} n_{m} + \Delta F_{g}.$$

(8.21)

Since F_{md} is a function of n_{m} we may write, analogous to equation (4.9):

$$\Delta F_{md} = \beta_{m} F_{do} \frac{n_{m}}{N_{mo}}$$

(8.22)

where the perturbation factor, β_{m}, is a function of n_{m}. If we replace ΔF_{g} in equation (8.21) according to equation (8.19), eliminate ΔF_{md} via equations (8.22), and solve the resulting expression for β_{m}, we obtain:

$$\beta_{m} = \frac{k_{md} N_{mo}}{F_{do}} \frac{F_{go}}{F_{do}}.$$

(8.23)

Next, we let β_{mo} denote the first term of this expression, i.e.:
Since β_g is zero for a constant gravitational flux, β_{mo} represents the value of β_m in the absence of a perturbation in F_g. Also, β_{mo} is equal to the fraction of the total downward flux of carbon-total at steady state transported by water motion. The overall perturbation factor, β_m, exceeds β_{mo} by the gravitational perturbation factor, β_g, multiplied by the fraction of steady state downward flux of carbon-total carried by gravity.

Next let us eliminate F_{do} and F_{go} between the first of equations (8.12), and equations (8.23) and (8.24) to arrive at the compact expression:

$$\beta_m = \beta_{mo} + \beta_g (1 - \beta_{mo}).$$ \hfill (8.25)

Also, by eliminating F_{do} between equations (8.22) and (8.24) we arrive at a compact expression for the downward perturbation flux in terms of the ratio of β_m and β_{mo}:

$$\Delta F_{md} = (\beta_m / \beta_{mo}) k_{md} n_m.$$ \hfill (8.26)

The upward perturbation flux is a result of water transport alone and thus is given by the simple expression (cf. equation (8.2)):

$$\Delta F_{dm} = k_{dm} n_d.$$ \hfill (8.27)

The steady-state perturbation factor, β_{mo}, is also useful in obtaining an alternative expression for the apparent fractionation factor α_{md} of equation (8.17). Substituting in equation (8.24) the expression for F_{do} given by the second of equations (8.12) we find with the aid of equation (8.3) that:

$$\beta_{mo} = \frac{N_{mo} W_d}{N_{do} W_m}$$ \hfill (8.28)

and hence:

$$\alpha_{md} = \beta_{mo} + \alpha_{mg} (1 - \beta_{mo}).$$ \hfill (8.29)

Since β_{mo} is equal to the fraction of the total downward flux of carbon-total transported by water motion at steady-state, the factor, α_{md}, is evidently the weighted average of the fractionation factor, α_{mg}, associated with the downward flux of rare isotopic carbon by gravitational settling, and the fractionation factor for water transport, which is unity.

For the rare isotopes we obtain directly from equations (8.10) and (8.11) the perturbation fluxes:

$$\Delta F_{md} = k_{md} n_m + \alpha_{mg} [R_m (F_{go} + \Delta F_g) - R_{mo} F_{go}],$$ \hfill (8.30)

Substituting for R_m in equation (8.30) the expression (cf. equation (6.14)):

$$R_m = \frac{n_m R_{mo} N_{mo}}{N_m N_{mo}}$$ \hfill (8.31)

and for ΔF_g according to equation (8.19), we obtain (cf. equation (6.16)):

$$\Delta F_{md} = k_{md} n_m + \alpha_{mg} \left(1 + \frac{\alpha_{mg} n_m / N_{mo}}{1 + n_m / N_{mo}}\right) \frac{n_m / N_{mo} R_{mo}}{1 + n_m / N_{mo}}.$$ \hfill (8.32)

As shown in subsection 10.4 the expression for $*F_{md}$ is slightly modified if the organic and biogenic carbon fluxes are considered separately and if their perturbation by external sources (i.e. β_g non-zero) produce changes in the fluxes which are different functions of the respective steady-state fluxes.

8.5 Solving the model equations

In terms of the perturbation fluxes, ΔF_{md} and ΔF_{dm}, the equations for the perturbations in N_m and N_d are given in general by equations (5.3) with "m" replacing "a" and "d" replacing "b", i.e.:

$$\frac{d}{dt} N_m = \Delta F_{dm} - \Delta F_{md} + \gamma_m,$$ \hfill (8.34)

$$\frac{d}{dt} N_d = \Delta F_{md} - \Delta F_{dm} + \gamma_d.$$ \hfill (8.35)

where γ_m and γ_d denote the combined external sources of carbon-total for reservoirs, m and d, respectively.

In terms of perturbation transfer coefficients similar to those of previous sections (Keeling, 73b) these equations may be rewritten:

$$\frac{d}{dt} [n_m + k_5 n_m n_d] = \gamma_m,$$ \hfill (8.34)

$$\frac{d}{dt} [n_d + k_6 n_d] = \gamma_d.$$ \hfill (8.35)

Similarly for rare isotopic carbon (cf. equation (6.18)).
The Suess Effect

\[
\frac{d*n_m}{dt} = \Delta*F_{dm} - \Delta*F_{md} + R*\gamma_m*\gamma_m - *\lambda*n_m
\]

\[
\frac{d*n_d}{dt} = \Delta*F_{md} - \Delta*F_{dm} + R*\gamma_d*\gamma_d - *\lambda*n_d
\]

(8.36)

Making use of equations (8.3), (8.14), (8.17), (8.28) and (8.29) we may write from \(k_5 \):

\[
*\lambda_n = \alpha_{md} k_{dm} (N_{do}/N_{mo}) *\phi_{md}
\]

(8.44)

where:

\[
*\beta_m = [\beta_{mo} + \alpha_{mg} (1 - \beta_{mo}) \beta_g]/\alpha_{md},
\]

(8.45)

\[
*\phi_{md} = \frac{1 + *\beta_m n_m/N_{mo}}{1 + n_m/N_{mo}}
\]

(8.46)

Equations (8.43) and (8.44) agree with equations (7.23) and (7.25) of Keeling (73b, p. 296) if higher order terms are ignored by setting \(*\phi_{md} \) equal to unity, and if \(\beta_g \) is set equal to zero on the assumption that the gravitational flux, \(F_g \), is constant (the symbol \(\alpha_{md} \) replaces \(\alpha_{dm} \) of Keeling (73b)).

Making use of equations (8.14), and (8.28) we may write alternatively for \(k_8 \):

\[
k_8 = k_{md} + \frac{\alpha_{mg} R_{mo} k_{dm} N_{do}(1 - \beta_{mo})(1 - \beta_g)}{N_{mo}(1 + n_m/N_{mo})}
\]

(8.47)

or:

\[
k_8' = \alpha_{mg} R_{mo} k_{dm} \left(\frac{N_{do} - W_d}{N_{mo} - W_m} \right) \left(\frac{1 - \beta_g}{1 + n_m/N_{mo}} \right)
\]

(8.48)

This last equation agrees with equation (7.27) of Keeling (73b, p. 200), if the perturbation factor, \(\beta_g \), and the second order term, \(n_m/N_{mo} \), are set equal to zero.

The solution for the reservoir perturbations, \(n_i \) and \(*n_i \), and the Suess Effect are obtained in a manner similar to that described in section 6 and 7.

8.6 Adaptation of the two reservoir model to portray continuous vertical diffusion

In their investigation of industrial CO₂ uptake by the oceans and land biota, Oeschger et al. (75) approached the problem of modeling the ocean beneath the surface mixed layer using a "box diffusion" model in which the vertical distribution of carbon-14 aids in establishing the response of the oceans to the atmospheric CO₂ input. The input of carbon-14 to the oceans is known from tree-ring studies to have been more or less constant for thousands of years, and therefore its distribution is
likely to have reflected an oceanic steady state prior to recent artificial creation of carbon-14 from nuclear bombs. Since an oceanic steady-state reflects a wide range of characteristic response times, this distribution in principal should be a valuable aid in devising a model valid for predictions of industrial CO2 uptake by the oceans. But because few observations of oceanic 14C were made prior to introduction of bomb 14C into the oceans, the steady-state distribution is well established only in the deep waters of the oceans where bomb 14C has still not penetrated appreciably. In the surface and intermediate waters above a depth of one thousand meters, where the oceanic response to industrial CO2 is important, the addition of bomb 14C has made difficult or impossible the determination of the preindustrial 14C distribution needed for modeling industrial CO2.

The authors have avoided the difficult problem of trying to correct the observational data for bomb 14C by constraining their model to fit only the most obvious undisturbed features of the 14C distribution: 14C/C ratio in surface water, measured in the early 1950s before bomb 14C had appreciably affected the oceans, and the 14C/C ratio below 1000 meters. Furthermore, only the 14C/C ratio at 4000 meters depth and the average ratio below 1000 meters were considered quantitatively. Regional differences were disregarded by taking areal weighted averages of the main ocean basins. The authors forced a constant eddy diffusion coefficient, K, to predict the observed 14C/C ratios at the surface and 4000 meters. The value of K found in this way, was of the order of 4000 m2 yr-1. This value led to a predicted average 14C/C ratio below 1000 meters in satisfactory agreement with observations, thus confirming that an assumption of constancy for K was not unreasonable.

As noted by Veronis (75) and others, salinity and temperature data indicate that it is unlikely that the ocean circulation obeys a constant vertical diffusive principle, and, therefore, the box diffusion model, like the two reservoir model of the carbon cycle, is a highly simplified parameterization of the transfer and storage of oceanic carbon. It too must be justified on the grounds, that it accords with data for time-dependent phenomena.

With respect to such phenomena the authors have noted that the box diffusion model satisfactorily predicts both the uptake of “bomb” carbon-14 produced since A.D. 1954 and the atmospheric 14C Suess Effect resulting from industrial CO2 production before A.D. 1954. The prediction of the latter is also compatible with the expected airborne fraction of carbon-total. Bomb carbon-14 as a tracer has the advantage that it was injected into the atmosphere over a short time period and like a single spike allows the free response of the oceans to be revealed. Although the source to the atmosphere is not so well established as that for industrial CO2, the amount in the atmosphere as a function of time is known quite precisely. Thus the uptake by the oceans can be estimated from a knowledge of the rate coefficient, kam, and the distribution of 14C in surface water as a function of time. But neither kam nor the 14C distribution in surface water are well enough known to calculate the uptake of 14C by the oceans very precisely. Furthermore, the observing period since the end of major weapons testing is too short to yield information on characteristic response times longer than a few years. Thus bomb carbon-14 as yet is of limited value in evaluating models to be used for predictions of industrial CO2 uptake. Additional time dependent tracer data, such as tritium from bomb tests, have been investigated to test both models, and more complicated models as well, but neither the distributions nor the source strengths of these tracers are yet well enough known to provide a convincing demonstration in favor of any particular model.

With respect to the atmospheric 14C Suess Effect, it turns out that the box diffusion model for different intensities of vertical diffusion predicts a relationship to the airborne fraction which is indistinguishable from that for a linear two reservoir ocean model when the assumed depth of the surface layer is varied (Keeling, 77, pp. 88-91). A finding that the box diffusion model successfully predicts both of these effects is therefore not a compelling argument for preferring that model over the two reservoir model with adjustable surface layer. A more convincing argument is that the box diffusion model predicts the Suess Effect, given the steady state distribution of 14C, whereas the two reservoir model typically uses the Suess Effect, to establish the effective depth of the surface layer. Although it appears reasonable to choose the surface layer depth near the middle of the main thermocline, say between 200 and 600 m depth (Bacastow, 79), the physical basis for this choice is less secure than the choice of parameters of the box diffusion model. But even this advantage of the box diffusion model is weakened because the diffusion coefficient, K, was obtained from a fit of the 14C/C distribution at only two depths and therefore is also insecurely established. In balance, the box diffusion model appears to be physically more realistic than the two reservoir model but not strikingly so.

Let us now derive expressions for the box diffusion model corresponding to the detailed expressions developed above in subsection 8.3. This model was solved approximately by Oeschger et al. (75) by subdividing the subsurface ocean into forty-six reservoirs, where each adjacent pair is governed by exchange equations similar to the multiple reservoir model discussed in subsection 8.2. The authors ignored the gravitational flux, assuming for simplicity that the steady state distribution of carbon-total was constant with depth. Let us now consider how the gravitational flux might be included in the formulation. This flux is not necessarily uniform with depth, and we may therefore appropriately assume that it varies as a function of the vertical coordinate, z, or from reservoir to reservoir if the vertical column is subdivided.

Let J(z, t) denote the (possibly time dependent) rate of regeneration of inorganic carbon-total particulate organic carbon and biogenic carbonate per unit volume in subsurface water at depth z. Then the total gravitational flux, originating in surface water, is given by the integral:

$$F_s(t) = \int_{h_m}^{h_s} J(z, t) A(z) \, dz \quad (8.49)$$
where \(h_m \) and \(h_s \) denote the average depth of the surface layer and ocean bottom, respectively, and \(A(z) \) denotes the area at depth, \(z \). Thus for layers, \(u, v, \ldots \), of the multiple layer model, there appears corresponding sources of carbon-total, \(F_u, F_v \), where, for say layer \(v \):

\[
F_v = A_v \bar{J}_v(z, t) (h_u - h_v) \tag{8.50}
\]

where \(\bar{J}_v(z, t) \) denotes the average of \(J(z, t) \) at time \(t \) over layer \(v \), \(h_t \) denotes the depth of the top \((i = u) \) and bottom \((i = v) \) of the layer, and \(A_i \) \((i = v) \) denotes its horizontal area.

Although the introduction of a vertically varying gravitational flux is in principle straightforward, so few data exist to establish it that only very approximate formulations have been attempted (Björkström, 79) and only for carbon-total, not for isotopic distributions. It lies beyond the scope of this discussion to explore the implications of industrial CO2 to the detailed distribution of isotopes in the subsurface oceans, and therefore, I will limit the discussion to a consideration of average differences in isotopic ratios between surface and deep water, similar to the approach of Oeschger et al. (75) to establish the diffusion coefficient, \(K \). This approach permits use of a simplified analytic solution of the box diffusion model for which present data, and the assumption of a constant diffusion coefficient, are more or less adequate to cope with the gravitational flux term.

The box diffusion model is equivalent to increasing the number of layers of a multiple reservoir model without limit. The rate of change in concentration as a function of depth of carbon-total below the surface layer of depth, \(h_m \), is given by Fick’s diffusion equation with an added local source term, \(J(z, t) \):

\[
\frac{\partial q(z, t)}{\partial t} = K \frac{\partial^2 q(z, t)}{\partial z^2} + J(z, t) \tag{8.51}
\]

where \(q(z, t) \) denotes the concentration of carbon-total at depth, \(z \), and time, \(t \), and where \(K \), the eddy diffusion coefficient, is assumed to be constant. A similar equation applies to rare isotopic carbon, with a radioactive decay \(*\lambda q(z, t) \) added in the case of carbon-14.

For steady-state distributions of chemical tracers this equation has been solved where the rate of regeneration, \(J \), is assumed to be constant or to vary exponentially with depth (Wyrtki, 62; Munk, 77; Craig, 69). Equation (8.51) has not been employed to predict time variable tracer concentrations.

Without a gravitational flux, the time dependent solution of equation (8.51) for carbon-total and carbon-14 was derived by Oeschger et al. (75) for an exponentially rising industrial CO2 source. In further simplification they neglected radioactive decay because the time spans of interest were short compared to radioactive decay time, \(*\lambda^{-1} \), and they neglected isotopic fractionation, since transport was assumed to be only by water motion.

For purposes of comparing surface and deep water averages, we need consider exchange only at the base of the surface layer, but we shall want to include consideration of gravitational flux and isotopic fractionation. Nevertheless, let us initially neglect the gravitational flux to establish the basic relationships between the models with only isotopic fractionation as an added complication. For the comparison and surface and deep water, the two reservoir oceanic model will be shown to provide most of the formulism needed to solve the box diffusion model, for an exponential CO2 source.

With \(F_g = 0 \) the net flux of carbon-total from a homogeneous surface ocean layer to a diffusive layer immediately below is given by:

\[
\Delta F_{m} - \Delta F_{dm} = -KA \frac{\partial q}{\partial z} \bigg|_{z = h_m} \tag{8.52}
\]

which leads to the result (Oeschger, 75):

\[
\Delta F_{m} - \Delta F_{dm} = \frac{n_{m o} e^{\mu t} \mu \sqrt{K/\mu} \tanh (h_d \sqrt{\mu/K})}{h_m} \tag{8.53}
\]

where, in accordance with equation (2.19) the perturbation, \(n_{m} \), in the surface layer is assumed to increase exponentially, i.e.:

\[
n_{m} = n_{m o} e^{\mu t} \tag{8.54}
\]

throughout the time period of interest. Similarly, below the surface layer, if an exponential increase is again assumed:

\[
n_{d} = n_{d o} e^{\mu t} \tag{8.56}
\]

Equations (8.55) and (8.56) are not serious further constraints over assuming equation (8.54) to hold, since, as shown by Bacastow and Keeling (79) all the reservoirs of a linearly coupled system increase nearly exponentially within about one e-fold time of the commencement of an exponentially increasing external source.

To obtain an expression for the two reservoir model corresponding to equation (8.53) we eliminate \(n_{m} \) and \(n_{d} \) in the second of equations (8.35) by means of the
exponential functions (8.54) and (8.56). With \(\gamma_d \) equal to zero (since industrial \(CO_2 \) is the only external source considered) this leads to:

\[
n_d = \frac{k_5}{\mu + k_6} n_{mo} e^{\mu t}.
\]

(8.57)

Substituting the first derivative of this expression for \(n_d \) in the second of equations (8.34) (again with \(\gamma_d \) equal to zero):

\[
\Delta F_{md} - \Delta F_{dm} = \frac{n_{mo} e^{\mu t} k_6}{\mu + k_6}.
\]

(8.58)

Equations (8.53) and (8.58) indicate that the two models will predict the same net perturbation in the flux of carbon-total from surface to deep ocean water, if the perturbation transfer coefficients \(k_5 \) and \(k_6 \) are so related to the diffusion coefficient \(K \) that both equations are satisfied for a given value of the e-fold time \(\mu^{-1} \), i.e.:

\[
\frac{\mu k_6}{r + k_6 h_m} = K \tanh \left(\frac{h_d}{\sqrt{\mu / K}} \right)
\]

(8.59)

where the depth of the surface layer, and thus the perturbation \(n_{mo} \), are assumed to be the same for both models.

For the two reservoir model (cf. equations (8.38) and (8.39)):

\[
\frac{\mu k_6}{r + k_6 h_m} = \frac{\mu (\beta_m/\beta_{mo}) k_{md}}{\mu + k_6 + k_{dm}}.
\]

(8.60)

Eliminating \(k_{md} \) via steady state equation (8.3):

\[
\mu k_6 = \frac{\mu (\beta_m/\beta_{mo}) k_{md} (W_d/W_m)}{\mu + k_6 + k_{dm}}.
\]

(8.61)

For realistic values of \(\mu \), and with \(\beta_m \) equal to \(\beta_{mo} \) (i.e. assuming a constant gravitational flux), \(k_{dm} \), to be compatible with equations (8.59) and (8.61), is found to be approximately 4 times larger than predicted by the first equality of equation (8.16) using the steady state carbon-14 distribution from which \(K \) was derived by Oeschger et al. (75). The same result holds if the gravitational flux is ignored, since then both \(\beta_m \) and \(\beta_{mo} \) are equal to unity.

As noted by Keeling and Balastow (77) this inconsistency can be remedied by increasing the assumed surface layer depth, \(h_m \), for the two reservoir model to approximately 4 times the 75 m chosen by Oeschger et al. (75) as the actual thickness of the homogeneous surface layer. This approach indeed leads to exactly the same prediction of the airborne fraction and atmospheric \(^{14}C \) Suess Effect with both models for a certain unique value of the two reservoir model surface layer thickness, \(h_m \). But increasing \(h_m \) is not the most direct way to adapt the two reservoir model to the diffusive case, and it cannot give exact correspondence between models for the oceanic Suess Effect even at the air-sea boundary.

An alternative approach is to regard \(k_5 \) and \(k_6 \) for the two reservoir model as perturbation coefficients and to disregard the steady state equations in their evaluation. For example, the reciprocal, \(k_5^{-1} \), may be postulated to represent the characteristic time for a surface contaminant to be diffused into the bulk of the ocean. Since diffusion into the surface layer of a contaminant injected into deep water is not under investigation, \(k_6 \) can be set equal to zero. As a further basis for setting \(k_6 \) equal to zero, the steady state equations for \(^{14}C \) indicate that \(k_{dm} \), to which \(k_6 \) corresponds in the two reservoir model, is of the order of 1/(1000 yr) or less, and thus negligible in comparison to \(K \) for typical e-fold times of industrial \(CO_2 \) of 20 to 50 yr (see section 11 below).

The two reservoir and box diffusion models lead to the same predictions for a given choice of the e-fold time, \(\mu \), if:

\[
\begin{align*}
k_5 &= \frac{\sqrt{K \mu}}{h_m} \\
k_6 &= 0
\end{align*}
\]

(8.62)

The factor \(\tanh (h_d/\sqrt{\mu / K}) \) is indistinguishable from unity for \(\mu^{-1} \) less than several hundred years and hence has been dropped from the expression for \(k_5 \).

Using equation (8.62), the vertical diffusion model is solved only at the base of the surface layer. But since the net flux across this boundary is fully prescribed, the integrated build-up of carbon-total in the subsurface ocean as a whole is also exactly prescribed. This is obviously as much as can be expected in adapting the two reservoir model to a computation of vertical diffusion.

Let us next consider the perturbation equations for rare isotopic carbon with the gravitational flux still neglected. In this case the perturbation coefficients, \(k_5 \) and \(k_6 \), for the two reservoir model are the same for carbon-total and rare isotopic carbon. Since the radioactive decay terms in equations (8.36) can be shown to contribute negligibly, the differential equations (8.35) and (8.37) for carbon-total and rare isotopic carbon reduce to expressions of identical form. Hence solutions compatible with the box diffusion model for rare isotopic abundances, \(*n_i \), are obtained by evaluating \(*k_5 \) and \(*k_6 \) by the expressions:
The Suess Effect

Let us now consider the case where a gravitational flux is included in both models. The correspondence between models cannot be made perfect, and in the absence of a direct simultaneous solution of the diffusion equation (8.51) for both carbon-total and rare isotopic carbon, we are obliged to seek some approximate relation connecting the steady state coefficients, \(k_{md} \) and \(k_{dm} \), which appear in equations (8.38) through (8.41) with the perturbation coefficients, \(k_5 \) and \(k_6 \). There is no difficulty in again setting \(k_5 \) and \(k_6 \) equal to zero since they are still both associated with a nearly negligible return perturbation flux of tracer, for \(e \)-fold times, \(\mu \) of interest. With respect to \(k_5 \) and \(k_6 \) it would appear reasonable to assume that the steady state gravitational flux, \(F_{go} \), is held constant (see subsection 8.2). Thus, the models ought to give nearly the same predictions for rare isotopic carbon if we assume that:

\[
\begin{align*}
* k_5 &= \frac{\sqrt{k} \mu}{h_m} + \frac{\beta_g F_{go}}{h_m N_{m_o}}, \\
* k_6 &= 0
\end{align*}
\]

(8.63)

Although these equations cannot yield entirely correct solutions to the diffusion equation, they have been tested by comparing predictions based on them with predictions of a two reservoir model with an enlarged surface layer (Keeling, 77). The two models produce almost the same change in predicted atmospheric Suess Effect when a steady state gravitational flux of the same magnitude is alternately included and excluded from both calculations.

As it happens, since the gravitational flux cannot be established reliably by direct measurements, probably the best estimates of \(F_{go} \) are those derived by considering the difference in concentration of carbon-total between surface and deep water in which the rate of turn-over of the deep water is estimated by carbon-14 data (Broecker, 74). In other words, the two reservoir model is probably at present the best model available to calculate the gravitational flux. The box diffusion model with the gravitational flux included is then solved via equations (8.64) and (8.65), with the value of \(F_{go} \) established from a separate two reservoir model calculation via equation (8.14). The value of \(k_{dm} \) in the latter equation is made consistent with the steady state carbon-14 distribution assuming no gravitational flux by solving the first equality of equation (8.16) for \(k_{dm} \) with \(14R_{mo}/14R_{do} \) evaluated as described in section 11 (see equation 11.11) and with \(\alpha_{md} \) set equal to unity. Since \(\alpha_{md} \) is found to be very close to unity when the gravitational flux is included, this approach cannot lead to significant distortion of the evaluation of \(k_{dm} \).

Similarly, the neglect of gravitational flux by Oeschger et al. (75) probably has not contributed significant error in the determination of \(K \). In principal the diffusion equation should have been separately solved for \(14C \) and \(C \) with the gravitational flux included, as Craig (69, 71) has forcibly pointed out. But in practice the use of \(14C/C \) ratios (especially ratios normalized to the variation in \(^{13}C/C \)) appear nearly to cancel out the influence of local sources of carbon in the tracer in the vertical column (Lal, 62). This problem deserves additional study which cannot be pursued here.

9. Four reservoir model

The simplest geochemical model which describes the main features of the industrial \(CO_2 \) perturbation of the carbon cycle consists of a combination of the four reservoirs already considered pairwise. Such a model is depicted in Fig. 6. Its adequacy is discussed by Oeschger et al. (75) and Keeling and Bacastow (77). As these authors point out, a single undifferentiated land biosphere is a reasonable first approximation to the global biospheric model. Very long cycled biospheric carbon, excluded in the single reservoir approximation, interacts only weakly with the industrial \(CO_2 \) perturbation while the short cycled carbon, also excluded, is in too small abundance to matter. The oceans, because of layering of warm water over cold, cannot be effectively modeled by a single undifferentiated ocean, however. A single reservoir model produces unrealistic responses to perturbations occurring in the range from 10 to 100 yr, the range of greatest interest to studies of industrial \(CO_2 \).

Nevertheless, as discussed above in section 8, a simple extension of the one reservoir ocean model appears to produce a realistic response to perturbations over a wide range of characteristic times. In this extended model the ocean beneath a homogeneously mixed surface layer is assumed to mix vertically by eddy diffusion. Even when the diffusion coefficient is assumed to be constant the response characteristics appear to be realistic. Furthermore, as Keeling and Bacastow (77) demonstrate, if the subsurface ocean is assumed to be randomly mixed, for example, by assuming two homogeneous reservoirs which exchange water, the response to perturbations in the range from 10 to 100 yr is similar to the diffusive model, provided that the ocean is divided well within the transition zone between the relatively homogenous surface and deep layers.

Obviously, more complex models both of the ocean and of land biosphere will be helpful in refining our understanding of the Suess Effect. But we have already
encountered considerable complexity with respect to isotopic relationships with the biosphere and oceans simplified to single and paired reservoirs, respectively, and it therefore seems preferable to limit the present discussion to the coupling of these three reservoirs to the atmosphere, in other words to restrict further discussion to what is implied by the rare isotopic and carbon-total equations already developed in sections 5 to 8, above.

Such a four reservoir perturbation model is readily constructed using the flux expressions already derived. The only new consideration is that, in contrast to the previously considered models, the atmosphere and ocean surface layer each exchange with two reservoirs. For carbon-total this is according to the general equations (cf. Fig. 6):

\[
\frac{dn_j}{dt} = \Delta F_{ij} + \Delta F_{kj} - \Delta F_{ji} - \Delta F_{jk} + \gamma_j
\]

where reservoirs \(i\) and \(k\) exchange carbon with reservoir \(j\). A similar equation applies to rare isotopic carbon.

In terms of the perturbation exchange coefficients, \(k_1 \ldots k_6\), we arrive, for carbon-total, at the set of differential equations:

\[
\begin{align*}
(d/dt + k_1) n_b - k_2 n_a &= \gamma_b \\
-k_1 n_b + (d/dt + k_2 + k_3) n_a - k_4 n_m &= \gamma_a \\
-k_3 n_a + (d/dt + k_4 + k_5) n_m - k_6 n_d &= \gamma_m \\
-k_5 n_m + (d/dt + k_6) n_d &= \gamma_d
\end{align*}
\]

(9.2)

where reservoirs \(i\) and \(k\) exchange carbon with reservoir \(j\). A similar equation applies to rare isotopic carbon. In terms of the perturbation exchange coefficients, \(k_1 \ldots k_6\), we arrive, for carbon-total, at the set of differential equations:

\[
\begin{align*}
(\frac{d}{dt} + k_1)n_b - k_2 n_a &= \gamma_b \\
-k_1 n_b + (\frac{d}{dt} + k_2 + k_3)n_a - k_4 n_m &= \gamma_a \\
-k_3 n_a + (\frac{d}{dt} + k_4 + k_5)n_m - k_6 n_d &= \gamma_m \\
-k_5 n_m + (\frac{d}{dt} + k_6)n_d &= \gamma_d
\end{align*}
\]

where reservoirs \(i\) and \(k\) exchange carbon with reservoir \(j\). A similar equation applies to rare isotopic carbon. In terms of the perturbation exchange coefficients, \(k_1 \ldots k_6\), we arrive, for carbon-total, at the set of differential equations:

\[
\begin{align*}
(d/dt + *k_1) *n_b - *k_2 *n_a &= R_{\gamma_b} \gamma_b + k_{9,10} n_b - k_{10,11} n_a \\
-*k_1 *n_b + (d/dt + *k_2 + *k_3) *n_a - *k_4 *n_m &= R_{\gamma_a} \gamma_a - k_{9,10} n_b + k_{10,11} n_a + k_{10,11} n_m \\
-*k_3 *n_a + (d/dt + *k_4 + *k_5) *n_m - *k_6 *n_d &= R_{\gamma_m} \gamma_m + (k_{9,10} + k_{5,6}) n_m \\
-*k_5 *n_m + (d/dt + *k_6) *n_d &= R_{\gamma_d} \gamma_d - k_{9,10} n_m
\end{align*}
\]

(9.3)

For rare isotopic carbon, the corresponding equations are:

\[
\begin{align*}
(d/dt + *\lambda + *k_1) *n_b - *k_2 *n_a &= R_{\gamma_b} \gamma_b + k_{9,10} n_b - k_{10,11} n_a \\
-*k_1 *n_b + (d/dt + *\lambda + *k_2 + *k_3) *n_a - *k_4 *n_m &= R_{\gamma_a} \gamma_a - k_{9,10} n_b + k_{10,11} n_a + k_{10,11} n_m \\
-*k_3 *n_a + (d/dt + *\lambda + *k_4 + *k_5) *n_m - *k_6 *n_d &= R_{\gamma_m} \gamma_m + (k_{9,10} + k_{5,6}) n_m \\
-*k_5 *n_m + (d/dt + *\lambda + *k_6) *n_d &= R_{\gamma_d} \gamma_d - k_{9,10} n_m
\end{align*}
\]

(9.4)

Since in general these differential equations are non-linear, approximate numerical methods are required to solve for the perturbations, \(n_i\) and \(*n_i\). Several methods of solution exist, for example, as described by Bacastow and Keeling (73), and by Oeschger et al. (75). If the equations are made linear by requiring all the coefficients, \(k_b \ldots k_i, k_j\) to be constants, additional numerical methods, for example, involving the computation of the eigenvectors of the matrix of coefficients, \(k_{ij}\) (Bacastow, unpublished) are available. These linear methods, however, offer little advantage over more direct numerical methods applied directly to the original equations.

The analytic solutions for \(n_i\) and \(*n_i\) are greatly simplified for the case where the equations are linear, and in addition, the only external sources of carbon-total are exponential functions of time, i.e. (cf. equation (2.16)):

\[
\gamma_i = \gamma_{10} e^{\mu t}
\]

(9.4)

and for rare isotopic carbon, the isotopic ratios \(R_{\gamma_i}\) are constants so that the isotopic sources, \(*\gamma_i\) are also exponential functions of time, i.e.:

\[
*\gamma_i = R_{\gamma_i} \gamma_{10} e^{\mu t}
\]

(9.5)
A solution using these exponential functions, may be obtained using the Laplace transformed counterparts of the governing differential equations. From equations (9.2) we obtain in matrix notation:

\[
\begin{bmatrix}
 s + k_1 & -k_2 & 0 & 0 \\
 -k_1 & s + k_2 + k_3 & -k_4 & 0 \\
 0 & -k_3 & s + k_4 + k_5 & -k_6 \\
 0 & 0 & -k_6 & s + k_6
\end{bmatrix}
\begin{bmatrix}
 \tilde{\eta}_b \\
 \tilde{\eta}_a \\
 \tilde{\eta}_m \\
 \tilde{\eta}_d
\end{bmatrix}
= \begin{bmatrix}
 \tilde{\gamma}_b \\
 \tilde{\gamma}_a \\
 \tilde{\gamma}_m \\
 \tilde{\gamma}_d
\end{bmatrix}
\]

which I will abbreviate by:

\[
[k_{ij}] [\tilde{\eta}_i] = [\tilde{\gamma}_i].
\] (9.7)

Similarly the Laplace transformed equations of equations (9.3) are:

\[
\begin{bmatrix}
 s + *\lambda + *k_1 & -*k_2 & 0 & 0 \\
 -*k_1 & s + *\lambda + *k_2 + *k_3 & -*k_4 & 0 \\
 0 & -*k_3 & s + *\lambda + *k_4 + *k_5 & -*k_6 \\
 0 & 0 & -*k_5 & s + *\lambda + *k_6
\end{bmatrix}
\begin{bmatrix}
 *\tilde{\eta}_b \\
 *\tilde{\eta}_a \\
 *\tilde{\eta}_m \\
 *\tilde{\eta}_d
\end{bmatrix}
= \begin{bmatrix}
 *\tilde{\gamma}_b \\
 *\tilde{\gamma}_a \\
 *\tilde{\gamma}_m \\
 *\tilde{\gamma}_d
\end{bmatrix}
\] (9.8)
which I will abbreviate by:

\[
\begin{bmatrix}
*{k_0} \\
*{k_1} \\
\end{bmatrix}
\begin{bmatrix}
*{\hat{n}_0} \\
*{\hat{n}_1} \\
\end{bmatrix}
= \begin{bmatrix}
*{\hat{\gamma}_0} \\
*{\hat{\gamma}_1} \\
\end{bmatrix}
\begin{bmatrix}
*{\delta}_0 \\
*{\delta}_1 \\
\end{bmatrix}
\]
(9.9)

To avoid the computation of absolute isotopic abundances, which are less well known than isotopic ratios relative to a standard ratio, it is convenient to divide this last equation by the isotopic ratio of atmospheric CO\(_2\), \(R_{ao}\). Thus:

\[
\begin{bmatrix}
*{k_0} \\
*{k_1} \\
\end{bmatrix}
\begin{bmatrix}
*{\hat{n}_0}/R_{ao} \\
*{\hat{n}_1}/R_{ao} \\
\end{bmatrix}
= \begin{bmatrix}
*{\hat{\gamma}_0}/R_{ao} \\
*{\hat{\gamma}_1}/R_{ao} \\
\end{bmatrix}
\begin{bmatrix}
*{\delta}_0 \\
*{\delta}_1 \\
\end{bmatrix}
\]
(9.10)

The analytic solutions of equations (9.7) and (9.10) with \(\gamma_b\), \(\gamma_m\) and \(\gamma_d\) equal to zero (e.g. when industrial CO\(_2\) is the only external source) are given by Keeling and Bacastow (73b). These solutions permit, with certain restrictions, an arbitrary functional form of \(\gamma_a\) with respect to time; provided that a convolution integral is evaluated. The method may be extended to provide solutions where all of the \(\gamma_i\) are arbitrary functions of time, but in this general case considerable numerical computation is required.

If the sources \(\gamma_i\) are exponential functions of time, a direct analytic solution is possible. Although this latter approach uses a minimum amount of computation, a still simpler approach, if a high speed computer is available, is to solve equations (9.6) and (9.8) directly. Indeed these may be first combined into the single matrix equation:

\[
\begin{bmatrix}
[k_0] & [0] \\
[k_1] & [\hat{\gamma}_0] \\
[k_1^*/R_{ao}] & [\hat{\gamma}_1] \\
[k_1^*/R_{ao}] & [\hat{\gamma}_1] \\
\end{bmatrix}
\begin{bmatrix}
[\hat{n}_0] \\
[\hat{n}_1] \\
[\hat{n}_0]/R_{ao} \\
[\hat{n}_1]/R_{ao} \\
\end{bmatrix}
= \begin{bmatrix}
[\gamma_0] \\
[\gamma_1] \\
[\gamma_0]/R_{ao} \\
[\gamma_1]/R_{ao} \\
\end{bmatrix}
\]
(9.11)

which I will abbreviate by:

\[
k\hat{n} = \hat{\gamma}
\]
(9.12)

The direct solution for \(n\) is obtained as:

\[
\hat{n} = k^{-1} \hat{\gamma}
\]
(9.13)

where \(k^{-1}\) is the inversion of \(k\), obtained numerically (Bronson, 69, p. 60).

Since the external sources are assumed to be exponential according to equations (9.4) and (9.5), the solutions of equations (9.2) and (9.3) for the \(n_i\) and \(*n_i\) take the form:

\[
n_i = n_{io} e^{\mu t},
\]
(9.14)

\[
*{n}_i = *{n}_{io} e^{\mu t},
\]
(9.15)

as was the case for the two reservoir model discussed in section 2 (equation (2.19) and (2.30)).

Corresponding to these equations, there exists a matrix solution of equations (9.13) in terms of the perturbation coefficients, \(n_{io}\) and \(*n_{io}\), i.e.:

\[
n_o = k^{-1}_{o} \gamma_o
\]
(9.16)

where \(n_o\) and \(\gamma_o\) denote the column vectors:

\[
\begin{align*}
n_o &= [n_{io}], \quad [*n_{io}/R_{ao}] \\
\gamma_o &= [\gamma_{io}], \quad [*\gamma_{io}/R_{ao}].
\end{align*}
\]
(9.17)

Equations (9.16) thus permits a complete solution for the \(n_i\) and \(*n_i\) by little more than a single matrix inversion.

If industrial CO\(_2\) is the only external source, i.e. if:

\[
\gamma_a = \gamma_{fo} e^{\mu t}
\]
(9.19)

the solution can be written in the more specific form:

\[
n_o = k^{-1} g \gamma_{fo}
\]
(9.20)

where \(g\) denotes the column vector:

\[
g = [0, 1, 0, 0, 0, R_f, 0, 0]
\]
(9.21)

As in the more general linear case (equation (9.5)), the rare isotopic ratio of industrial CO\(_2\), \(R_f\), is assumed to be constant.

The reservoir fractions needed to compute the Suess Effect are related to the \(n_{io}\) and \(*n_{io}\) (cf. equations (1.9), (1.14), (2.18) and (2.23)) by:
The Suess Effect

\[r_i = \frac{n_{io} \mu}{\gamma_{fo}} \]
(9.22)

\[*r_i = \frac{n_{io} \mu}{R_{io} \gamma_{fo}} \]
(9.23)

Since these fractions differ from the \(n_{io} \) and \(*n_{io}\) only by constant factors, it follows that:

\[r = k^{-1} g \mu \]
(9.24)

where \(r \) denotes the column vector:

\[r = [r_i, [*r_i R_{io} / R_{ao}] \]
(9.25)

Thus a matrix solution for the factors, \(r_i \) and \(*r_i\) \(R_{io}/R_{ao} \), can be obtained directly.

After the solution for \(r \) is found, the Suess Effect is computed (cf. equations (1.22), (2.37)) by:

\[S_i = \frac{Q (*r_i - r_i)}{N_{io} (1 + r_i Q)} \]
(9.26)

where (cf. equation (2.18)):

\[Q = (\gamma_{fo} / \mu) e^{\mu t} \]
(9.27)

and where the \(*r_i\) are obtained from the 5th to 8th elements of vector \(r \) by multiplication by \(R_{ao}/R_{io} \).

10. Carbonate dissolution within the oceans

10.1 General remarks

The predicted relationships between rare isotopic carbon and carbon-total in the carbon cycle are altered considerably if appreciable amounts of sedimentary carbon on the sea floor are assumed to dissolve and furnish additional carbonate ion to the sea water.

In deep ocean water, marine carbonates are likely to dissolve as soon as industrial CO\(_2\) reaches these waters (Peng, 78). Even under normal conditions, most solid carbonate particles entering the oceans from rivers, and most biogenic carbonate shell material produced in surface water, dissolve on reaching the deeper ocean basins. The carbonate ions produced by dissolution are returned to shallower waters above by the deep water circulation. During the industrial CO\(_2\) era, an accelerated dissolution is likely to occur and perturb this otherwise nearly steady-state condition. This tendency will have little effect on the oceanic uptake of industrial CO\(_2\) for several hundred years, however, because of the slowness with which deep water exchanges with the ocean surface.

If dissolution of shallow marine carbonates should also occur, the oceanic uptake of industrial CO\(_2\) from the air would increase considerably even in early stages of the industrial era because of the proximity of the overlying waters to the air-sea boundary. Arguing against this possibility is the generally high degree of supersaturation of surface water with respect to carbonates (Revelle, 57a; Edmond, 70; Ingle, 73). Pure calcite will probably not dissolve appreciably in near-surface sea water even at the time of highest atmospheric CO\(_2\) when the pH of the water might drop as low as 7.6 (Bacastow, 73 and unpublished). The more soluble carbonate mineral, aragonite, is abundant in shallow tropical seas, and some aragonite is likely to dissolve during the next century. It is doubtful, however, whether there is enough of this mineral available to reduce atmospheric CO\(_2\) levels more than a few percent.

Perhaps the most likely shallow water carbonates to dissolve under the influence of industrial CO\(_2\) are deposits of high magnesian calcite, which according to Wolfall and Reinhard-Derie (77), may attach to calcitic sediments. Such deposits, which essentially consist of a solid solution of MgCO\(_3\), may be sufficiently soluble to be already dissolving as a result of industrial CO\(_2\) entering shallow water. Thus an analysis of the processes affecting the Suess Effect is not complete until the influence of carbonate dissolution is considered.

The problem of predicting carbonate dissolution from industrial CO\(_2\) is complicated by uncertainties as to the amount of soluble carbonates at shallow depths and by kinetic factors involving the rate at which solid carbonates dissolve when the acidity of sea water changes (Berner, 74, 76). As a first step in solving the general problem, I will disregard the possible exhaustion of material and the time delays attending dissolution by assuming that the carbonate ion in sea water remains in equilibrium with an inexhaustible supply of solid carbonate. Calculations based on this assumption will establish upper limits for the magnitude of the carbonate effect for given values of other model parameters.

It is not immediately evident how to incorporate carbonate dissolution into the formulism developed in previous sections, because dissolution not only provides sources of carbonate to the oceanic reservoirs where it dissolves, but afterwards this carbonate is redistributed by water motion between oceanic reservoirs. The transport relationships of carbonate ion are made complicated by the chemical dependence of dissolved carbonate on the concentrations of bicarbonate ion and carbonic acid (see equations (7.9) and (7.10)) and other weak acids in sea water such as boric acid (Edmond, 70). There is a way around this difficulty, however, because carbonate dissolution releases calcium and magnesium ions which can be traced as they are transported from one region to another. The degree to which calcium and magnesium is complexed with carbonate and bicarbonate ion (Whitfield, 75) is not important in this regard because only the total amount of dissolved calcium and magnesium is relevant in keeping track of the dissolved carbonate.
10.2 Chemical relationships of carbonate dissolution and their influence on the gravitational flux of carbon-total

To explain the use of calcium as a tracer, let us first disregard the influence of dissolved magnesium and postulate that equilibrium is maintained between pure solid calcium carbonate and sea water by the chemical reaction:

\[
\text{CaCO}_3 \rightleftharpoons \text{Ca}^{2+} + \text{CO}_3^{2-} \quad (10.1)
\]

At equilibrium:

\[
[\text{Ca}^{2+}][\text{CO}_3^{2-}] = K_{sp} \quad (10.2)
\]

where brackets denote concentrations. The solubility product, \(K_{sp}\), as in the case of the dissociation constants, \(K_1\) and \(K_2\), is invariant to reaction (10.1) but varies with temperature, salinity and hydrostatic pressure.

To apply this equation to the two reservoir model, let \(C_i\) denote the amount of dissolved calcium (\(\text{Ca}^{2+}\) and its ion complexes) in oceanic reservoir \(i\) in units of moles multiplied by the molecular weight of carbon. Let \(\Delta C_i\) denote perturbations from an assumed initial steady state value \(C_{io}\), i.e.:

\[
\Delta C_i = C_i - C_{io} \quad (10.3)
\]

Let \(\eta_i\) denote the rate of dissolution of solid calcium carbonate, \(\text{CaCO}_3\), in reservoir \(i\) in the same units as used for the carbon-total of industrial \(\text{CO}_2\) source, \(\gamma_f\). Then:

\[
\frac{dn_i}{dt} = \frac{d\Delta C_i}{dt} = \eta_i \quad (10.4)
\]

for the changes in \(N_i\) and \(C_i\) owing solely to dissolution. This simple relation results because the amounts of dissolved calcium and carbonate are defined in the same mass units (g of C). Because the carbonate equilibrium equation (10.2) establishes a direct functional relationship between dissolved calcium and carbon-total concentrations, the total change in \(N_i\) and \(C_i\), i.e. the change owing all processes including transport also obeys equation (10.4).

To establish how carbonate equilibrium affects the exchange processes in the reservoir model we make use of equation (10.4) to compare perturbed and steady states. Neglecting spatial variability in chemical parameters within reservoir \(i\) we obtain directly:

\[
\frac{[\text{Ca}^{2+}]}{[\text{Ca}^{2+}]_o} = \frac{[\text{CO}_3^{2-}]}{[\text{CO}_3^{2-}]_o} \quad (10.5)
\]

where subscript \("o"\) denotes a preindustrial steady state. Next, we relate this equation to the equilibrium of the other dissolved species of carbon-total, namely \(\text{CO}_2\) and \(\text{HCO}_3^\cdot\). The product of equations (7.11), (7.12), and (7.13) is:

\[
K_0K_1K_2 = \frac{[\text{H}^+]^2[\text{CO}_2^{2-}]}{P_{\text{CO}_2}} \quad (10.6)
\]

whence:

\[
\frac{[\text{Ca}^{2+}]}{[\text{Ca}^{2+}]_o} = \frac{(P_{\text{CO}_2})_o}{(P_{\text{CO}_2})} \frac{[\text{H}^+]^2}{[\text{H}^+]^2}_o \quad (10.7)
\]

Thus, for the oceanic surface layer:

\[
\frac{C_m}{C_{mo}} = \frac{P_{mo}}{P_m} \frac{[\text{H}^+]^2}{[\text{H}^+]^2}_o \quad (10.8)
\]

or, in view of equation (7.16):

\[
\frac{C_m}{C_{mo}} = \frac{N_m}{N_{mo}} \frac{[\text{H}^+]^2}{[\text{H}^+]^2}_o \quad (10.9)
\]

Since \([\text{H}^+]\) and \(\phi_m\) are functions of \(N_m\), we can expand in a Taylor’s series (cf. equation (4.8)) in the neighborhood of \(N_{mo}\):

\[
\frac{C_m}{C_{mo}} = 1 + \xi_{mo} \left(\frac{N_m}{N_{mo}}\right)^1 + \xi_{m1} \left(\frac{N_m}{N_{mo}}\right)^2 + \ldots \quad (10.10)
\]

whence:

\[
\frac{\Delta C_m}{C_{mo}} = \xi_m \frac{N_m}{N_{mo}} \quad (10.11)
\]

where:

\[
\xi_m = \xi_{mo} + \xi_{m1} \left(\frac{N_m}{N_{mo}}\right) + \ldots \quad (10.12)
\]
As in the case of the CO₂ evasion factor, \(\xi \), the hydrogen ion concentration, \([H^+]\), must be determined or eliminated as an intermediate step in finding the carbonate factor, \(\xi'_{m} \). Bolin and Eriksson (59) developed approximate equations which essentially found the term, \(\xi_{mo} \), of equation (10.12), while Bacastow and Keeling (79) used an iterative procedure without approximating the chemical equations, equivalent to determining all significant terms in equation (10.12). As in the case of \(\xi \), it is sufficient in our consideration of the problem merely to assume that the coefficients, \(\xi_{mo}, \xi_{ml}, \ldots \), are known. The corresponding factors, \(\xi_{io}, \xi_{il}, \ldots \), of any subsurface reservoir, can similarly be assumed to be known.

10.3 Model equations for carbon-total

To establish relationships for the two reservoir model adapted to include carbonate dissolution, the perturbation equations of carbon-total (equations (8.35)) are revised by the inclusion of carbonate sources, \(\eta_{m} \) and \(\eta_{d} \) defined by equation (10.4):

\[
\begin{align*}
\frac{d}{dt} + k_{5} n_{m} - k_{6} n_{d} &= \eta_{m}, \\
\frac{d}{dt} + k_{6} n_{d} - k_{5} n_{m} &= \eta_{d}
\end{align*}
\]

(10.13)

(10.14)

where \(k_{5} \) and \(k_{6} \) are related by equations (8.38) and (8.39) to the steady state coefficients, \(k_{md} \) and \(k_{md} \). Since the carbonate sources, \(\eta_{i} \) are dependent upon the external sources, \(\gamma_{i} \), these are here written on the left side of the equality sign (cf. equation (5.4)).

To establish corresponding equations for dissolved calcium it is first necessary to determine the influence of the gravitational flux of particulate carbonate which accounts for about 30% of the total gravitational flux between surface and subsurface waters at steady state (Broecker, 74, p. 11), as noted in subsection 8.3.

The new terms for this derivation will be designated by addition a subscript “c” before the subscripts of the corresponding terms for carbon-total. The fluxes of calcium between reservoirs \(m \) and \(d \), including both particulate and dissolved forms, are then given by:

\[
\begin{align*}
F_{cm} &= k_{md} C_{m} + F_{cm}^{eg} \\
F_{cd} &= k_{md} C_{d}
\end{align*}
\]

(10.15)

as the counterparts of equations (8.1) and (8.2).

The gravitational fluxes of both organic particles and biogenic particulate carbonate were postulated by equation (8.18) to vary in response to changes in the amount of carbon-total in the ocean surface layer. Thus for the particulate carbonate flux by itself we write as the counterpart of equation (8.19):

\[
\Delta F_{cg} = \beta_{cg} F_{go} n_{m}/N_{mo}.
\]

(10.16)

Since this flux consists of particles of CaCO₃, it may be regarded both as a flux of carbon-total and of calcium.

Similarly for the perturbation in flux of calcium to subsurface water by both water transport and gravitational flux, as the counterpart of equation (8.22):

\[
\Delta F_{emd} = \beta_{em} F_{do} n_{m}/N_{mo}
\]

(10.17)

or, alternatively, as the counterpart of equation (8.26):

\[
\Delta F_{emd} = (\beta_{em} / \beta_{mo}) k_{md} n_{m}
\]

(10.18)

where \(\beta_{cg} \) and \(\beta_{cm} \) are power series in \(n_{m}/N_{mo} \) defined in a manner similar to equation (8.20).

Corresponding to equation (8.23):

\[
\beta_{em} = \frac{k_{md}}{F_{do}} + \frac{F_{go} \beta_{cg}}{F_{do}}.
\]

(10.19)

The return perturbation flux of calcium is obtained directly from the second of equations (10.15) since only water motion is involved (cf. equation (8.27)):

\[
F_{cd} = k_{dm} \Delta C_{d}.
\]

(10.20)

In terms of the perturbation in carbon-total, \(\eta_{d} \):

\[
\Delta F_{cd} = k_{dm} \xi_{d} C_{do} n_{d}/N_{do}
\]

(10.21)

where, analogous to equation (10.11) \(\xi_{d} \) is defined by the expression:

\[
\frac{\Delta C_{d}}{C_{do}} = \xi_{d} \frac{n_{d}}{N_{do}}.
\]

(10.22)

The perturbation equations for dissolved calcium are (cf. equations 8.34):

\[
\begin{align*}
\frac{d C_{m}}{dt} &= \frac{d \Delta C_{m}}{dt} = \Delta F_{cd} - \Delta F_{emd} + \eta_{m} \\
\frac{d C_{d}}{dt} &= \frac{d \Delta C_{d}}{dt} = \Delta F_{c-md} - \Delta F_{c-md} + \eta_{d}
\end{align*}
\]

(10.23)
where we assume that no external sources of carbonate are present. Substitution for ΔF_{cmd} and ΔF_{edm} according to equations (10.18) and (10.21):

$$\frac{d \Delta C_m}{dt} + \left[\frac{(\beta_{cm} / \beta_{m_o}) k_{md}}{1 - \xi_m \frac{C_{m_o}}{N_{m_o}}} \right] n_m -$$

$$\left(\xi_d \frac{C_{do}}{N_{do}} \right) k_{dm} n_d - \eta_m = 0$$

$$\frac{d \Delta C_d}{dt} + \left[\frac{(\beta_{cm} / \beta_{m_o}) k_{md}}{1 - \xi_d \frac{C_{do}}{N_{do}}} \right] n_d -$$

$$\left(\beta_{cm} / \beta_{m_o} \right) k_{md} n_m - \eta_d = 0$$

(10.24)

These equations may be expressed as perturbations in carbon-total by eliminating $\frac{d \Delta C_m}{dt}$ and $\frac{d \Delta C_d}{dt}$ via equations (10.11) and (10.22), respectively. Introducing the symbols, θ_{m}, to express the fractions of the change in reservoir abundances, n_i, and in gravitational flux perturbation, ΔF_{cmd}, which are not due to carbonate dissolution, i.e.:

$$\theta_m = 1 - \xi_m \frac{C_{m_o}}{N_{m_o}}$$

(10.25)

$$\theta_d = 1 - \xi_d \frac{C_{do}}{N_{do}}$$

(10.26)

$$\theta_g = 1 - \beta_{cm} / \beta_{m_o}$$

(10.27)

we obtain:

$$\frac{d n_m}{dt} + \frac{(1 - \xi_m \frac{C_{m_o}}{N_{m_o}) k_{md}}}{(1 - \xi_d \frac{C_{do}}{N_{do})} k_{dm} n_m - n_m = 0}$$

$$\frac{d n_d}{dt} + \frac{(1 - \beta_{cm} / \beta_{m_o}) k_{md} n_m}{(1 - \beta_{cm} / \beta_{m_o}) k_{md} n_m - n_d = 0}$$

(10.28)

Eliminating k_{md} and k_{dm} via equations (8.38) and (8.39), we obtain:

$$\frac{d n_m}{dt} + \frac{(1 - \theta_m) (1 - \theta_g) \beta_{m_o} k_{md}}{(1 - \theta_d) k_{dm} n_d - n_m = 0}$$

$$\frac{d n_d}{dt} + \frac{(1 - \theta_g) \beta_{m_o} k_{md}}{(1 - \theta_d \beta_{cm} / \beta_{m_o}) k_{md} n_m - n_d = 0}$$

(10.29)

We obtain the desired equations for the carbon-total perturbations, n_i, by substituting the above expressions for the calcium carbonate dissolution sources, η_i, in equations (10.13) and (10.14):

$$\theta_m \left(\frac{d n_m}{dt} + \theta_g k_b n_m - \theta_d k_s n_d = \gamma_m \right)$$

$$\theta_d \left(\frac{d n_d}{dt} + k_s n_d - \theta_g k_b n_m = \gamma_d \right)$$

(10.30)

From the definitions of the functions, θ_{m}, it can be seen that equations (10.30) account for the transport of carbon owing to the external sources, γ_i, after subtracting the transport owing to carbonate dissolution.

The fractions, θ_m and θ_d, are evaluated in terms of the non-linear factors, ξ_m and ξ_d, defined by equation (10.11) and (10.22). The latter, as may be recalled, express how the concentrations of calcium and carbon in surface and deep oceans vary in response to the external sources, γ_i. The function, θ_g, depends not only on one of these factors, ξ_m, but also on the parameters, β_{g} and β_{cg} which express how the total gravitational flux, F_g, and the biogenic carbonate portion of that flux, F_{cg}, respond to these external sources. To evaluate θ_g we proceed via equation (8.23) and (10.19) which define β_m and β_{cm}, respectively.

The factor, β_{cm}, given by equation (10.19), is conveniently reexpressed by an equation derived in the manner of equation (8.25) with $\xi_m \frac{C_{m_o}}{N_{m_o}}$ replaced in accordance with equation (10.25), i.e.:

$$\beta_{cm} = \beta_{m_o} (1 - \theta_m) + \beta_{cg} (1 - \theta_m)$$

(10.31)

Substituting this expression for β_{cm} and the expression for β_m of equation (8.25) into equations (10.27) we obtain after some rearrangement:

$$\theta_g = \frac{(1 - \theta_m) \beta_{g} (1 - \theta_m) - \beta_{cm}}{\beta_{m_o} + (1 - \theta_m) \beta_{cg}}$$

(10.32)

As can be seen, θ_m and θ_g are equal unless the gravitational flux varies with external sources (i.e. β_{g} and β_{cg} are nonzero).

10.4 Model equations for rare isotopic carbon

For the rare isotopes we are obliged to consider separately the two gravitational fluxes which were combined in section 8 as the single global flux, F_g. With properties of the organic flux distinguished by the
The Suess Effect

subscript \(p \) (for "particulate organic carbon") we redefine \(F_g \) as the sum:

\[
F_g = F_{cg} + F_{pg}\tag{10.33}
\]

The perturbation factor, \(\beta_g \), is likewise composed of a sum:

\[
\beta_g = \beta_{cg} + \beta_{pg}\tag{10.34}
\]

where \(\beta_{pg} \) is defined (cf. equation (10.16)) by:

\[
\Delta F_{pg} = \beta_{pg} \frac{F_{g0} n_m}{N_{m0}}.\tag{10.35}
\]

The fractionation factor, \(\alpha_{mg} \), associated with the steady-state gravitational flux, \(F_{g0} \), is now defined as a weighted mean of the factors for organic carbon and biogenic carbonate:

\[
\alpha_{mg} = (\alpha_{cmg} F_{cg0} + \alpha_{pmg} F_{pg0})/F_{g0}.\tag{10.36}
\]

Consistent with these definitions the perturbation flux, \(\Delta F_{m0} \) given by equation (8.30) is now reexpressed with two separate terms associated respectively with fractionation of biogenic carbon and particulate organic carbon:

\[
\Delta F_{m0} = k_{md} *n_m + \alpha_{cmg} \left[R_m (F_{cg0} + \Delta F_{cg}) - R_{m0} F_{cg0} \right] + R_{cm} \left[\frac{\alpha_{mg} (\alpha_{cmg} \beta_{cg} + \alpha_{pmg} \beta_{pg}) n_m}{N_{m0}} \right] + \alpha_{pmg} \left[R_m (F_{pg0} + \Delta F_{pg}) - R_{m0} F_{pg0} \right].\tag{10.37}
\]

Proceeding as in subsection 8.5, we obtain for the perturbation exchange coefficient, \(k_5 \), and the virtual source coefficient, \(k_s \):

\[
\begin{align*}
*k_5 &= k_{md} + \frac{F_{g0} \left(\alpha_{mg} + (\alpha_{cmg} \beta_{cg} + \alpha_{pmg} \beta_{pg}) n_m/N_{m0} \right)}{N_{m0} + n_m/N_{m0}} \\
&+ \frac{R_{m0} F_{g0} (\alpha_{mg} - \alpha_{cmg} \beta_{cg} - \alpha_{pmg} \beta_{pg})}{N_{m0} (1 + n_m/N_{m0})} \\
&\quad \quad \quad \quad + \frac{R_{cm} \left((\alpha_{cmg} \beta_{cg} + \alpha_{pmg} \beta_{pg}) \right) n_m}{N_{m0} + n_m/N_{m0}} \\
&\quad \quad \quad \quad + \frac{R_{cd} \left(\alpha_{cmg} \beta_{cg} + \alpha_{pmg} \beta_{pg} \right) n_m}{N_{m0} (1 + n_m/N_{m0})}.
\end{align*}\tag{10.38}
\]

If the perturbations in the gravitational flux for particulate organic carbon and biogenic carbonate grow in proportion to their relative magnitude at steady-state, i.e. if:

\[
\begin{align*}
\beta_{cg} &= \beta_{g0} \frac{F_{cg0}/F_{g0}}{F_{cg0}/F_{g0}} \\
\beta_{pg} &= \beta_{g0} \frac{F_{pg0}/F_{g0}}{F_{pg0}/F_{g0}}
\end{align*}\tag{10.39}
\]

then:

\[
\alpha_{mg} = \alpha_{cmg} \beta_{cg} + \alpha_{pmg} \beta_{pg} \tag{10.40}
\]

and the expressions for \(*k_5 \) and \(k_s \) simplify to the former equations (8.40), and (8.42) respectively.

The former equations (8.37) for the perturbations of rare isotopic carbon are rewritten with isotopic carbonate sources:

\[
\begin{align*}
(d/dt + \lambda + *k_5) *n_m - *k_6 *n_d &= R_{cm} \eta_m + R_{cm} \eta_m + R_{cm} \eta_m + R_{cm} \eta_m \\
(d/dt + \lambda + *k_6) *n_d - *k_5 *n_m &= R_{cd} \eta_d + R_{cd} \eta_d + R_{cd} \eta_d + R_{cd} \eta_d
\end{align*}\tag{10.41}
\]

where \(R_{cm} \) and \(R_{cd} \) denote, respectively, the isotopic ratios of previously solid carbonate which is dissolving in surface and subsurface reservoirs. Eliminating the \(\eta_i \) via equations (10.13) and (10.14):

\[
\begin{align*}
(d/dt + \lambda + *k_5) *n_m - *k_6 *n_d &= k_8 \eta_m + R_{cm} \gamma_m \\
(d/dt + \lambda + *k_6) *n_d - *k_5 *n_m &= -k_8 \eta_m + R_{cd} \gamma_d
\end{align*}\tag{10.42}
\]
10.5 Solving the model equations

In the four reservoir model the changes in formulation to allow for carbonate dissolution are now readily incorporated. In matrix notation the submatrices of equation (9.11) are:

\[
[k_{ij}] = \begin{bmatrix}
 s + k_1 & -k_2 & 0 & 0 \\
 -k_1 & s + k_2 + k_3 & -k_4 & 0 \\
 0 & -k_3 & \theta_m s + k_4 + \theta_k k_5 & -\theta_d k_6 \\
 0 & 0 & -\theta_k k_5 & \theta_d (s + k_6)
\end{bmatrix}
\]

\[\text{(10.43)}\]

\[
[k_{ij}' / R_{ao}] = \begin{bmatrix}
 k_9' & -k_{10}' & 0 & 0 \\
 -k_9' & k_{10}' & k_7' & 0 \\
 0 & -R_{cm} k_3 & -k_7' + k_8' + R_{cm} (s + k_4 + k_5) & -R_{cm} k_6 \\
 0 & 0 & -k_8' - R_{cd} k_5 & R_{cd} (s + k_6)
\end{bmatrix}
\]

\[\text{(10.44)}\]

\[
[*k_{ij}] = \begin{bmatrix}
 s + *\lambda + *k_1 & -*k_2 & 0 & 0 \\
 -*k_1 & s + *\lambda + *k_2 + *k_3 & -*k_4 & 0 \\
 0 & -*k_3 & s + *\lambda + *k_4 + *k_5 & -*k_6 \\
 0 & 0 & -*k_5 & s + *\lambda + *k_6
\end{bmatrix}
\]

\[\text{(10.45)}\]

\[
[\tilde{\gamma}_i] = \begin{bmatrix}
 \tilde{\gamma}_b \\
 \tilde{\gamma}_a \\
 \tilde{\gamma}_m \\
 \tilde{\gamma}_d
\end{bmatrix}, \quad [*\tilde{\gamma}_i / R_{ao}] = \begin{bmatrix}
 R_{\gamma_b} \tilde{\gamma}_b \\
 R_{\gamma_a} \tilde{\gamma}_a \\
 (R_{\gamma_m} - R_{cm}) \tilde{\gamma}_m \\
 (R_{\gamma_d} - R_{cd}) \tilde{\gamma}_d
\end{bmatrix}
\]

\[\text{(10.46), (10.47)}\]
The matrix \([k_{ij}] \) is unchanged from the case without carbonate dissolution (equation (9.8)). Additional terms \(R_{cmk3} \) and \(R_{cmk4} \) arise in matrix \([k_{ij}']/R_{ao} \) as a result of including transfer terms between the atmosphere and surface layer in the equation for the ocean surface layer (cf. equations (9.2) and 10.13)).

10.6 Influence of magnesium on equilibrium carbonate dissolution

Let us now consider briefly how the above relationships are modified if magnesium calcite rather than pure calcium carbonate remains in equilibrium with sea water during the industrial era. According to Wollast and Reinhard-Derie (77) this equilibrium involves a solid solution of MgCO\(_3\) and CaCO\(_3\) for which the instantaneous chemical reaction is:

\[
\text{Mg}_x \text{Ca}(1-x) \text{CO}_3 \xrightleftharpoons{} x \text{Mg}^2+ + (1-x) \text{Ca}^2+ + \text{CO}_3^{2-}
\] (10.48)

where \(x \) is the mole fraction of MgCO\(_3\) in the solid solution. For a finite extent of reaction the mass balance relationship between dissolved and solid species is complicated owing to the tendency for the solid solution to change composition so as to maintain constant the quotients:

\[
K_{\text{CaCO}_3} = \frac{a_{\text{Ca}} a_{\text{CO}_3}}{a_{\text{CaCO}_3}}
\] (10.49)

\[
K_{\text{MgCO}_3} = \frac{a_{\text{Mg}} a_{\text{CO}_3}}{a_{\text{MgCO}_3}}
\] (10.50)

where \(a_{\text{Ca}}, a_{\text{Mg}}, \) and \(a_{\text{CO}_3} \) are the chemical activities, respectively, of \(\text{Ca}^2+ \), \(\text{Mg}^2+ \), and \(\text{CO}_3^{2-} \) in sea water, and \(a_{\text{CaCO}_3} \) and \(a_{\text{MgCO}_3} \) are the activities in the solid phase. For a perturbation owing to industrial CO\(_2\), it is probably justified to assume that the chemical activities in the solid phase as well as in sea water are proportional to concentration since the ranges in concentration will be small. With this simplification:

\[
[\text{Ca}^2+] [\text{CO}_3^{2-}] = K_{spC} (1-x)
\] (10.51)

\[
[\text{Mg}^2+] [\text{CO}_3^{2-}] = K_{spM} x
\] (10.52)

where \(K_{spC} \) and \(K_{spM} \) are constants for any given water mass.

Since both magnesium and calcium ions are released by dissolution, let us redefine \(C_i \) as the sum of the concentrations of \(\text{Ca}^2+ \) and \(\text{Mg}^2+ \) (including ion complexes) in oceanic reservoir \(i \) in moles times molecular weight of carbon. Then, comparing perturbed and steady states (cf. equation (10.5)):

\[
\frac{C_i}{C_{io}} = \frac{[\text{Ca}^2+] + [\text{Mg}^2+]}{[\text{Ca}^{2+}]_o + [\text{Mg}^{2+}]_o}
\] (10.53)

where the concentrations denoted by the brackets apply to reservoir \(i \). Eliminating \([\text{Ca}^{2+}]\) and \([\text{Mg}^{2+}]\) and their steady state values by means of equations (10.51) and (10.52), we find that:

\[
\frac{C_i}{C_{io}} = \frac{[\text{CO}_3^{2-}]_o}{K_{spC} (1-x) + K_{spM} x}
\] (10.54)

where \(x_o \) is the mole fraction of MgCO\(_3\) in the solid solution at steady state.

Since the mole fraction, \(x \), is a function of the total dissolved carbon in reservoir \(i \) it is again possible to obtain a Taylor's series expansion as in the case of dissolution of CaCO\(_3\). Thus the previous formulation of the two reservoir model with calcium carbonate dissolution still applies. The perturbation parameters \(\xi_i \) and \(\theta_i \) take on different values, but the differences are expected to be slight.

If we assume an unlimited supply of magnesian calcite then the mole fraction \(x \) is constant and equation (10.42) simplifies to:

\[
\frac{C_i}{C_{io}} = \frac{[\text{CO}_3^{2-}]_o}{K_{spC} (1-x) + K_{spM} x}
\] (10.55)

An assumption of unlimited magnesium calcite is probably not realistic, but in view of the lack of data on the solubility and occurrence of magnesium carbonates, and lack of assurance that equilibrium will be maintained during a perturbation by industrial CO\(_2\), it is not justified to attempt to evaluate \(x \) from the general mass balance and equilibrium relationships given by Wollast and Reinhard-Derie (77). We may therefore consider the equilibrium case as a somewhat dubious upper limit on the influence of dissolution of oceanic CO\(_2\) uptake.

Because the molar concentration of magnesium in sea water greatly exceeds that of dissolved inorganic carbon, dissolution of carbonate sediments in response to industrial CO\(_2\) could not appreciably change the sum of the concentrations of calcium and magnesium up to the present time. It follows from equations (10.55) that the carbonate ion concentration, \([\text{CO}_3^{2-}]\) in sea water remains essentially constant if equilibrium with magnesium calcite is maintained. In this case, it can be shown that the CO\(_2\) evasion factor, \(\xi \), tends to a limiting value of 2. Since \(\xi \) is found to be approx-
imately 2.5 if magnesium is assumed to play no part in carbonate dissolution controlled by equilibrium with sea water (see section 11), the inclusion of magnesium in the equilibrium will not produce marked changes in prediction. The possibility is so remote that calcium carbonate dissolution has occurred to the extent predicted by \(\xi \) equal to 2.5, that the more extreme case of magnesium carbonate dissolution will not be further considered.

11. Preparing the four reservoir model for calculations

11.1 Strategy for testing the model

A limited analysis of the capabilities of the foregoing four reservoir isotopic carbon cycle model will be undertaken now to identify which factors in the global carbon cycle appear to be the most important in predicting the Suess Effect and, by extension, what is likely to be learned about the carbon cycle from new isotopic time series. Existing information is adequate, or nearly so, to investigate the sensitivity of the model to estimated uncertainties in the observational data from which the model parameters are derived. Such an investigation is relatively straightforward because most of the model parameters behave as nearly independent variables, at least for small perturbations. A sensitivity analysis, for example, will indicate the order of magnitude of error in isotopic predictions when fractionation is neglected as in the Suizer approximation.

The best strategy for carrying out a sensitivity analysis is not immediately obvious, however. The degree of numerical uncertainty in model parameters varies considerably. Also, some parameters are closely related to observational data of known accuracy, but others depend on indirect calculations. Some are difficult to trace back to observational data and some even rely on assumptions inconsistent with the model under examination. Ideally, such indirect numerical inputs would be avoided altogether, but this would unduly complicate the analysis.

A large and valuable part of the observational data is closely related to the output produced by solving the differential equations of the model under study. Direct use of these data would require an inverse solution of the model equations, a task which is not only more complicated than the direct solution, but may lead to subtle mathematical instabilities (Tweney, 77). This problem is lessened, however, if we restrict our attention to intervals of the time record when the abundances of both carbon-total and rare isotopic carbon were changing nearly exponentially. Stated more correctly, we may steer around the inverse problem by concerning ourselves only with hypothetical cases of exponential perturbations similar, but not identical, to the perturbations which have actually occurred in the carbon cycle.

As a major simplification of the real problem, the only time varying source of carbon to be considered will be industrial \(\text{CO}_2 \). Any man-induced \(\text{CO}_2 \) exchanges with the biosphere will be portrayed indirectly by an adjustment of the biosphere perturbation factor, \(\beta_a \). This is equivalent to assuming that man's effect on biospheric exchange, whatever its magnitude and direction, has risen proportionally with increased consumption of fossil fuel. Actually this is not an unreasonable first approximation, since fossil fuel has provided most of the world's commercial energy since the late 1800s, and man's agricultural activities have grown roughly in proportion to energy consumption. Whether this is a good assumption or not, existing data on land clearing and forest practices are of little help in finding a better relationship. It is difficult enough just to estimate the cumulative amount of land cleared and forests harvested, and the resultant release of \(\text{CO}_2 \) to the atmosphere over the industrial era as a whole (Revelle, 77; Schlesinger, 77). Nevertheless, a sensitivity analysis involving less restricted biospheric sources would be valuable, and should be undertaken.

As a further simplification, the sensitivities of parameters will be tested only for small perturbations such that a linearized model is adequate. This is an important first step, since it is necessary to establish which parameters are critical to all perturbations whether large or small.

Also, a concern about future levels of atmospheric \(\text{CO}_2 \) applies mainly to carbon as a chemical and not as a tracer, and thus perfecting isotopic models applicable to the next century is not of great interest at this time. Conversely, because existing isotopic data are only useful to test models of the carbon cycle during the recent period of small perturbations, these data are not of much help in establishing nonlinear relationships which are likely to appear later on. This is especially the case for the \(^{14}\text{C} \) Suess Effect which extends only to about A.D. 1954. The principal benefits of isotopic studies are to validate steady-state parameters and to indicate the relative importance of ocean and biospheric uptake of industrial \(\text{CO}_2 \) over the past 100 yr.

Because the average change in atmospheric \(\text{CO}_2 \) concentration since A.D. 1958 is known from direct observations, it is important to establish parametric sensitivities in a manner which does not contradict this record. This is especially necessary in connection with the atmospheric Suess Effect, since the predicted isotopic ratios for both \(^{13}\text{C} \) and \(^{14}\text{C} \) closely follow the predicted rise in carbon-total, irrespective of the parameter being varied.

Those parameters which influence the prediction of the airborne fraction, \(r_a \), will therefore be covaried such that \(r_a \) remains constant from case to case. Since the magnitude of the biospheric perturbation parameter, \(\beta_a \), is unknown at present even as to its sign, this parameter will be given the reduced status of a dependent variable; it will be adjusted each time some other parameter affecting carbon-total is varied. This approach leads to some surprising relationships for different parametric choices, but as far as I can tell, leads to a more revealing analysis then if parameters are varied without regard for their effect on \(r_a \). As proposed in section 1, the theoretical Suess Effect, although considered primarily a function of industrial \(\text{CO}_2 \) input to the carbon cycle, will be regarded also to be a function of biospheric changes such as are implied by an adjustable \(\beta_a \).
For an exponentially rising CO₂ input, a sensitivity analysis is essentially an examination of how the reservoir fractions, \(r_i \) and \(r_n \), or more explicitly, their differences:

\[
\Delta r_i = r_i - r_i^0
\]

(11.1)

vary as functions of the model parameters. These fractions, which are constant for a given exponential source, will therefore be tabulated for representative choices of the model parameters. The theoretical Suess Effect, \(S_i \), for reservoir \(i \), is readily derived from \(\Delta r_i \) since (cf. equation (1.22)):

\[
S_i = \left(\frac{Q}{N_i} \right) \Delta r_i
\]

(11.2)

For \(^{13}\text{C}\) the function \(\Delta \delta C_i \) (cf. equation (1.27)) will be tabulated instead of the Suess Effect since this quantity, expressed in terms of \(^{13}\text{C}/^{12}\text{C}\) ratios instead of \(^{13}\text{C}/^{12}\text{C}\) ratios, is more readily compared to published observational data. It is likely that a comprehensive set of standardized input data to test carbon cycle models will soon be established elsewhere (Bolin, private communication) and, therefore, I have made only a minor attempt here to update or refine existing observational data. I have relied principally on my own previous investigations and those of Oeschger et al. (75) to form a set of parameters adequate for a sensitivity analysis.

All calculations discussed below were performed using a version of the four-reservoir which, for the oceans, closely resembles the box-diffusion model of Oeschger et al. (75), as described in subsection 8.6, above.

Because of the complexities of including an oceanic gravitational flux in the formulation for the box diffusion model, and the relatively minor influence this flux has an isotopic ratios as demonstrated below, this feature of the oceanic carbon cycle will be examined as a separate aspect of the sensitivity analysis.

11.2 Standardized model parameters

As a basis for testing the sensitivity of the four-reservoir model to changes in model parameters, a standard case has been chosen which resembles the actual carbon cycle in as many respects as practicable. The essential inputs to the model for this standard case are listed in Table 2. Choices which are not obvious from the table and its footnotes will now be explained; first, in this subsection, for the case in which the gravitational flux, \(F_{g_0} \), is set equal to zero; then, in the following subsection, for the case where \(F_{g_0} \) is not zero.

The lack of observational data prior to the industrial era makes difficult the assigning of standard values, either to the steady-state abundances, \(N_{a_0} \), or to the steady-state exchange coefficients, \(k_{ij} \). Some of the choices must inevitably be based on computations which, strictly speaking, are themselves model dependent since, as noted in section 1, the available observational data are only for times when industrial CO₂ has already begun to perturb the carbon cycle. The precise standard values used are, however, not critical to a sensitivity analysis, and therefore in most instances do not justify refining previous calculations to yield values fully consistent with the model under investigation.

In the case of CO₂ exchange with the land biosphere, the variables selected as model inputs are the abundances \(N_{a_0}, N_{g_0} \), and the steady-state flux, \(F_{b_0} \). For purpose of establishing the steady-state coefficient, \(k_{ab} \), (equal to the quotient \(F_{b_0}/N_{a_0} \)) the value of \(N_{a_0} \) will be assumed to be equivalent to a mixing ratio of 290 ppm. In calculating the atmospheric Suess Effect via equation (11.2) the value of \(N_{a_0} \) will depend, however, on the choice of the time period being considered. To make this clear, the symbol \(N_{a_0} \) will henceforth be used to denote the amount of atmospheric CO₂ corresponding to 290 ppm. This value is close to the value believed to have prevailed in the late 19th century, as discussed below. In contrast, \(N_{a_0} \) will refer to the initial value of \(N_a \) used in solving the model equations.

In the case of air-sea exchange, the chosen input parameters, in addition to \(N_{a_0} \), will be the steady-state coefficient, \(k_{am} \), and the depth of water, \(h_a \), containing the same amount of inorganic carbon-total as the atmosphere in preindustrial times, i.e.:

\[
h_a = \frac{N_{a_0} \cdot W_m}{N_{m_0} A}
\]

(11.3)

where \(A \) is the area of the oceans including adjacent seas. In terms of the depth of the surface layer defined by:

\[
h_m = \frac{W_m}{A}
\]

(11.4)

the abundance of carbon-total in surface ocean water is given by the expression:

\[
N_{m_o} = N_{a_0} \frac{(h_m/h_a)}
\]

(11.5)

For convenience in comparing results with those of Oeschger et al. (75), \(h_g \) will be set equal to 58 meters. For an oceanic area of \(3.61 \times 10^{14} \) (Sverdrup, 42) and \(N_{a_0} \) of 6.156 \(10^{17} \) (see Table 2), this choice leads to a concentration of carbon-total in surface sea water, \(N_{a_0}/(A h_g) \), of 29.50 g m⁻³ or 2.45 mmol l⁻¹. This concentration is an extreme value for deep ocean water and thus nearly 20% too high for surface water, as noted below in subsection 11.3. If the surface waters of adjacent seas, especially of the Arctic ocean, are excluded, the implied deep ocean concentration is still higher. Because of the insensitivity of predictions of the Suess Effect parameters (as found below) the choice of standard value is not important enough to warrant readjustment.

The air to sea exchange coefficient, \(k_{am} \), was calculated to be consistent with the steady-state vertical distribution of \(^{14}\text{C}/^{12}\text{C}\) implied by the box-diffusion model. Numerical values for the parameters, \(^{14}R_{m_0}/^{14}R_{a_0}, h_m, \) and \(K \) were chosen to agree with those of
| Table 2. Model parameters for the standard case |

Steady-state factors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{do})</td>
<td>carbon in land biosphere</td>
<td>(1)</td>
<td>1560 × 10^{15} g of C</td>
</tr>
<tr>
<td>(F_{go})</td>
<td>flux of CO2 between atmosphere and land biosphere</td>
<td>(1)</td>
<td>26 × 10^{15} g of C yr^{-1}</td>
</tr>
<tr>
<td>(h_a)</td>
<td>depth of hypothetical surface ocean layer containing (N_{do}) g of carbon</td>
<td>(2)</td>
<td>58 m</td>
</tr>
<tr>
<td>(h_m)</td>
<td>average depth of ocean (including adjacent seas)</td>
<td>(2)</td>
<td>75 m</td>
</tr>
<tr>
<td>(k_{dm})</td>
<td>transfer coefficient for uptake of CO2 by surface ocean</td>
<td>(3)</td>
<td>1/(7.53 yr)</td>
</tr>
<tr>
<td>(K_e)</td>
<td>vertical eddy diffusion coefficient</td>
<td>(2)</td>
<td>3987 m^2 yr^{-1}</td>
</tr>
<tr>
<td>(m_o)</td>
<td>ratio of concentration of carbon-total in surface ocean water to that in deep ocean water</td>
<td>(4)</td>
<td>2.09 mmol t^{-1}/2.33 mmol t^{-1}</td>
</tr>
<tr>
<td>(F_{go})</td>
<td>gravitational flux of particulate organic carbon and biogenic carbonate from surface to deep ocean</td>
<td>(4)</td>
<td>3.5 × 10^{15} g of C yr^{-1}</td>
</tr>
<tr>
<td>(F_{go}/F_{go})</td>
<td>fraction of gravitational flux which is biogenic carbonate</td>
<td>(5)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Carbon isotopic fractionation factors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{eb})</td>
<td>uptake of CO2 by land biosphere</td>
<td>(6)</td>
<td>0.982 (0.982)</td>
</tr>
<tr>
<td>(\alpha_{re})</td>
<td>release of CO2 by land biosphere</td>
<td>(6)</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>(\alpha_{em})</td>
<td>uptake of CO2 by surface ocean</td>
<td>(6)</td>
<td>0.986 (0.986)</td>
</tr>
<tr>
<td>(\alpha_{eq})</td>
<td>equilibrium between atmospheric CO2 and surface oceanic bicarbonate</td>
<td>(6)</td>
<td>1.009 (1.009)</td>
</tr>
<tr>
<td>(\alpha_{ep})</td>
<td>transfer in surface ocean from bicarbonate to carbon of the gravitational flux</td>
<td>(7)</td>
<td>0.983 (0.983)</td>
</tr>
<tr>
<td>(\alpha_{ep})</td>
<td>transfer in surface ocean from bicarbonate to particulate (biogenic) carbonate</td>
<td>(8)</td>
<td>0.999 (0.999)</td>
</tr>
</tbody>
</table>

Perturbation factors and functions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi)</td>
<td>surface ocean CO2 ("evasion factor")</td>
<td>(9)</td>
<td>8.8957 2.4282</td>
</tr>
<tr>
<td>(\alpha_{eb})</td>
<td>same for rare isotopic carbon atmospheric dependence of land biospheric uptake of CO2</td>
<td>(9)</td>
<td>= \xi = \xi</td>
</tr>
<tr>
<td>(\beta_{as})</td>
<td>atmospheric dependence of land biospheric uptake of CO2 ("biospheric growth factor")</td>
<td>(10)</td>
<td>0.290549-0.113678</td>
</tr>
<tr>
<td>(\beta_{as})</td>
<td>same for A.D. 1886-1956 atmospheric dependence of land biospheric release of CO2</td>
<td>(10)</td>
<td>-0.323097-0.656475</td>
</tr>
<tr>
<td>(\beta_{as})</td>
<td>same for deep ocean</td>
<td>(11)</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Other factors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14\Lambda)</td>
<td>radioactive decay constant for (^{14}C)</td>
<td>(1)</td>
<td>1/(8267 yr)</td>
</tr>
<tr>
<td>(13\Lambda)</td>
<td>(^{13}\text{C}/^{12}\text{C}) ratio of standard, P.D.B.</td>
<td>(13)</td>
<td>0.0112372</td>
</tr>
<tr>
<td>(13R)</td>
<td>(^{13}\text{C}/^{12}\text{C}) ratio of same organic carbon</td>
<td>(14)</td>
<td>0.0111123</td>
</tr>
<tr>
<td>(A)</td>
<td>area of oceans</td>
<td>(15)</td>
<td>3.61 × 10^{14} cm^{2}</td>
</tr>
</tbody>
</table>

- Keeling (1973a). p. 301. The fractionation factors from \(^{14}C \) are the square of the corresponding \(^{13}C \) factors (Skirrow, 1965, p. 288).
- From direct measurements of \(^{13}C/^{12}C \) ratios and the concentration of carbon-total in sea water Craig (1970) p. 693 estimated the following \(^{13}C \) values: for the gravitational flux irrespective of its chemical form: -15% for carbon-total in surface water +2% for particulate organic carbon and biogenic carbonate as discussed in section 8.3 and expressed by equation (10.36). Assuming that 30% of the flux is carbonate with a \(^{13}C \) of +1% consistent with recent nannofossils (see note (8) below), Craig’s value implies \(^{13}C \) of particilar organic carbon of -22% and thus \(^{13}C_{eq} = 0.976) |
- Kroopnick et al. (1977) p. 304 indicate in their figure 5 an average \(^{13}C \) for \(^{14}C \) in ocean surface water of +2.0%. Also, they state (p. 318) that recent nannofossils exhibit \(^{13}C \) of 0.6 to 0.8%. Hence a fractionation factor of 0.999. Laboratory experiments of Rubinson and Clayton quoted by Kroopnick et al. (1977) p. 318 confirm this value.
- Bacastow and Keeling (1979). Factor of rare isotopic carbon assumed to be same as for carbon-total.
- Adjusted such that the model reproduces the observed cumulative airborne fraction for the prescribed time interval.
- Assumed to be zero as described in subsection 4.3 of the text.
- Assumed to be unity, consistent with small perturbations.
- Mock and Grootes (1973). See also Craig (1957).
- By equation (11.27).
- Sverdrup et al. (1942) p. 15. Area includes adjacent seas. Used only in the determination of the gravitational flux, \(F_{go} \). See subsection 11.3 and note (4), above.
Oeschger et al. (75). Since these authors calibrated their model using 14C/C ratios corrected for isotopic fractionation, a special procedure was followed in applying their calibration to the present model which includes fractionation in its formulation.

Specifically, the steady-state relationship for 14C/C of Keeling and Bacastow (73b, p. 288; equation (6.30)) leads to the relationship:

$$\frac{14\text{R}_{do}}{14\text{R}_{mo}} = \sqrt{\frac{\lambda}{K}} \frac{h_d}{h_m}$$

where the fractionation factors, α_{sm} and α_{mo}, have been set equal to unity in accordance with the use of corrected ratios, and 14R_{do} denotes the average 14C/C ratio of the subsurface ocean. Since the gravitational flux is assumed to be zero, the concentration of carbon is everywhere the same, i.e.:

$$\frac{N_{do}}{W_d} = \frac{N_{mo}}{W_m}$$

In terms of the depths, h_m and h_d, as defined by equations (11.3) and (11.4) and the areal average depth of the deep ocean, h_d, defined by:

$$h_d = \frac{W_d}{A}$$

the oceanic abundances, N_{mo} and N_{do}, are related to each other and to the atmospheric abundance, N_a, by:

$$\frac{N_{do}}{h_d} = \frac{N_{mo}}{h_m} = \frac{N_a}{h_a}$$

Consistent with the above equations the mass ratios, N_{mo}/N_a, and N_{do}/N_a, in equation (6.30) of Keeling and Bacastow (73b) have been replaced by corresponding depth ratios, h_m/h_a and h_d/h_a.

The box diffusion model (Oeschger, 75) predicts that the corrected 14C/C ratio of subsurface water at steady-state varies with depth according to:

$$\frac{14\text{R}_{do} (z)}{14\text{R}_{mo}} = \frac{\cosh[\sqrt{\frac{\lambda}{K}} (h_d - z)]}{\cosh[\sqrt{\frac{\lambda}{K}} h_d]}$$

where z denotes the vertical coordinate, positive downward. The vertically averaged value of R_{do} is obtained by integrating equation (11.10) from $z = h_m$ to $z = h_m + h_d$. Hence:

$$k_{am}^{-1} = 7.53 \text{yr.}$$

For the ratio, $14R_{mo}/14R_{do}$, Oeschger et al. (75) adopted the value 0.950 based on direct observations of 14C/C ratio of surface water obtained from A.D. 1955 to mid-1977. These are the earliest observations of 14C in surface water and are the closest to preindustrial conditions ever obtained.

To assume that these data are representative of preindustrial values is in contrast to the approach of Bacastow and Keeling (73) who assumed that surface water as late as A.D. 1955 was influenced by industrial CO$_2$ and forced their model to predict the observed values of $14R_m/14R_a$ on this assumption. They unavoidably obtained slightly different values of the preindustrial ratio, $14R_{mo}/14R_{do}$, as a function of various choices of other model parameters.

It may be argued that 14C from weapons testing in 1954 had already entered surface waters so as to very nearly compensate for the local Suess Effect at the time of the early surface water measurements. This view is supported by the coral records of Nozaki et al. (78), and Druffel and Linick (78), but additional proxy records of surface water 14C/C would be valuable as further verification. In any case the uncertainty in the significance of the observed values of surface water 14C/C in the 1950s suggests that the refinements in the calculation of Bacastow and Keeling (73) are not justified here. Therefore the value 0.950 will be adopted; whence, we obtain via equation (11.4):

$$k_{am}^{-1} = 7.53 \text{yr.}$$

This value was not changed when h_a or K were afterwards varied in the sensitivity analysis, because fundamentally k_{am} is an expression of gas exchange which does not depend on either h_a or K.

On the other hand, the steady state relationships between k_{am} and $14R_{mo}$ should be made internally consistent in model calculations where fractionation is included. Accordingly, after the value of k_{am} was established, the value of $14R_{mo}$ was redetermined making full use of the steady state relationship with
fractionation (but not the gravitational flux) included (Keeling, 73b, p. 388; equation (6.31)) i.e.:

\[
\frac{^{14}R_{mo}}{^{14}R_{ao}} = \frac{^{14}a_{am}}{^{14}a_{ao}} + (\frac{\lambda}{k_{am}}) \left(\frac{h_{m}}{h_{a}} \right) + \left(\frac{^{14}R_{do}}{^{14}R_{mo}} \right) \left(\frac{h_{d}}{h_{a}} \right)
\]

(11.12)

For \(^{13}\)C, the steady state isotopic ratio for surface water was calculated on the assumption of equilibrium with the atmosphere, i.e.:

\[
\frac{^{13}R_{mo}}{^{13}R_{ao}} = \frac{^{13}a_{eq}}{^{13}a_{eq}}
\]

(11.13)

where \(^{13}a_{eq}\), the equilibrium fractionation factor (equal to \(a_{um}/a_{mq}\)), is known from laboratory data (Deuser, 67; Mook, 74).

For deep water in the absence of a gravitational flux, since transport by water is without fractionation:

\[
^{13}R_{mo} = ^{13}R_{do}.
\]

(11.14)

With respect to carbonate dissolution, chemical equilibrium was assumed for both isotopes between solid carbonate and total dissolved inorganic carbon in the sea water of the reservoir involved, i.e.:

\[
\frac{R_{cio}/R_{io}}{R_{io}/R_{io}} = \alpha_{ie}
\]

(11.15)

where \(\alpha_{ie}\) denotes the equilibrium fractionation factor between dissolved bicarbonate and solid carbonate for reservoir \(i\). Since the assumption of equilibrium for carbon-total is an extreme case chosen essentially as an upper limit of the extent of dissolution, it seems logical to adopt an upper limit for the \(^{14}\)C concentration in carbonates by leaving out of consideration the possible radioactive decay of \(^{14}\)C of the carbonate undergoing dissolution.

With respect to the land biosphere, the ratio \(^{14}R_{bo}/^{14}R_{ao}\) for carbon-14 was calculated by the expression:

\[
\frac{^{14}R_{bo}}{^{14}R_{ao}} = \frac{^{14}a_{ab}}{^{14}a_{ba}}
\]

(11.16)

This equation is derived by solving the first of equations (6.7) for \(R_{bo}/R_{ao}\) after replacing \(k_{ba}\) by its equivalent \(F_{bo}/N_{bo}\) according to the first of equations (4.12).

For the land biosphere, in accordance with equations (6.7) applied to \(^{13}\)C, with \(\lambda\) set equal to zero (cf. equations (2.27)):

\[
\frac{^{13}R_{bo}}{^{13}R_{ao}} = \frac{^{13}a_{ab}}{^{13}a_{ba}}
\]

(11.17)

The theoretical Suess Effect for \(^{13}\)C will be compared with observations for the period A.D. 1956 to 1978. For all but the first three years of this period the concentration of CO\(_2\) in the atmosphere is established from nearly continuous measurements at Mauna Loa Observatory, Hawaii and twice monthly data from the South Pole (Keeling, 76a, 76b and unpublished) but even for the earlier years, A.D. 1956 to 1959, enough direct measurements were made elsewhere to establish monthly average concentrations reasonably representative of the northern hemisphere (Keeling, 78). For A.D. 1955, 1956 and 1978 \(^{13}\)/\(^{12}\)C ratios of atmospheric CO\(_2\) were also measured concurrently with concentration measurements.

From these data, Keeling et al.(79) computed best estimates of the concentration of carbon-total and of the \(^{13}\)/\(^{12}\)C ratio of atmospheric CO\(_2\) in the northern hemisphere for January 1 of 1956 and 1978, as listed in Table 3. For atmospheric CO\(_2\) (Fig. 7) the concentration has risen in a manner consistent with an exponentially rising input of industrial CO\(_2\). The e-fold time of rise for

![Fig. 7. Trend in concentration of atmospheric CO\(_2\) at Mauna Loa Observatory, Hawaii (19°N, 156°W). Dots: Monthly average concentrations in parts per million (ppm) by volume of dry air. Curve: exponential fit of the monthly averages after seasonal adjustment as described by Bacastow and Keeling (73). Points before March 1958 refer to proxy data (Keeling, 78) which are not included in determining the exponential fit.](image-url)
Table 3. Additional model parameters related to industrial and atmospheric CO₂ for the standard case

<table>
<thead>
<tr>
<th>Time interval (t₁ - t₂):</th>
<th>1886-1956</th>
<th>1956-1978</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial CO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>production rate for A.D. 1860</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>µ₁</td>
<td>(1) 0.1963</td>
<td>0.08346</td>
</tr>
<tr>
<td></td>
<td>Gt/yr</td>
<td>Gt/yr</td>
</tr>
<tr>
<td>µ₁</td>
<td>(1) 0.0241/yr</td>
<td>0.0433/yr</td>
</tr>
<tr>
<td></td>
<td>Gt</td>
<td>Gt</td>
</tr>
<tr>
<td>Q₂/Q₁, cumulative production from (3)</td>
<td>67.13713</td>
<td>78.81615</td>
</tr>
<tr>
<td>Na₂, same at atmospheric CO₂ concentration at t₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ₁/µ₁, cumulative production coefficient which multiplies exponential factor, e⁻ᵗ (equal to Q₂₁)</td>
<td>(4) 14.87260</td>
<td>45.86916</td>
</tr>
<tr>
<td></td>
<td>Gt</td>
<td>Gt</td>
</tr>
<tr>
<td>Atmospheric CO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atmospheric CO₂ concen- at t₁</td>
<td>(5) 288.4 ppm</td>
<td>314.1 ppm</td>
</tr>
<tr>
<td>tration at t₁</td>
<td>(5) 314.1 ppm</td>
<td>334.2 ppm</td>
</tr>
<tr>
<td>Nₐₜ, atmospheric CO₂ abundance at t₁</td>
<td>(6) 612.20359</td>
<td>666.75848</td>
</tr>
<tr>
<td></td>
<td>Gt</td>
<td>Gt</td>
</tr>
<tr>
<td>Nₐₜ₂, same at t₂</td>
<td>(6) 666.75848</td>
<td>709.42593</td>
</tr>
<tr>
<td></td>
<td>Gt</td>
<td>Gt</td>
</tr>
<tr>
<td>Nₛₒₒ</td>
<td>(7) 12.08531</td>
<td>24.83146</td>
</tr>
<tr>
<td>coefficient which multiplies exponential factor, e⁻ᵗ</td>
<td>Gt</td>
<td>Gt</td>
</tr>
<tr>
<td>preindustrial abundance, assuming an exponential rate of increase during the industrial era</td>
<td>(8) 600.11827</td>
<td>641.92702</td>
</tr>
<tr>
<td></td>
<td>Gt</td>
<td>Gt</td>
</tr>
<tr>
<td>Isotopic Ratios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¹³Rₒₒ/¹³Rₛₒₒ CO₂ ratio of industrial CO₂ relative to preindustrial atmospheric CO₂</td>
<td>(9) —</td>
<td>0.980</td>
</tr>
<tr>
<td>¹³Cₒₒ</td>
<td>(10) —</td>
<td>-6.69 %</td>
</tr>
<tr>
<td>¹³Cₛₒₒ standard P.D.B. of atmospheric CO₂ at t₁ same at t₂</td>
<td>(10) —</td>
<td>-7.4 %</td>
</tr>
</tbody>
</table>

Notes
(1) Based on least squares fit to industrial CO₂ production data (Keeling et al., 1979b) using equation (11.18) with t = 0 on January 1, 1860. Gt = 10¹⁵ g of C.
(2) For A.D. 1886 - 1956 reciprocal of above values of µ₁, rounded to nearest year. For A.D. 1956 - 1978 22 yr was adopted (instead of 23 yr as given from above value of µ₁) to confirm to the value used earlier by Keeling and Bacastow (1977) p. 93.
(3) Based directly on production data of Keeling et al. (1979b).
(4) Computed by equation (11.20) using above values of Q₂₁ - Q₁ and e⁻ᵗ; t = 0 for yr t₁.
(5) For A.D. 1886 from Callendar (1958) as described in subsection 11.2. For A.D. 1956 and 1978 from Keeling et al. (1979a).
(6) Computed from above assuming that 290 ppm corresponds to 615.6 Gt (see Nₒₒ of Table 2). Abundances are expressed to nearest 10⁵ Gt to avoid rounding errors as isotopic parameters are varied.
(7) Computed by equation (11.22) with above values for Nₛₒₒ, Nₐₜ₂, and e⁻ᵗ; t = 0 for yr t₁.
(8) Computed from equation (11.21) with t = 0, Nₒₒ = Nₛₒₒ, and above value of nₛₒₒ.
(9) From Schwarz (1970) the following approximate averages are deduced for δ¹³C: coal, -24.8%o; crude oil, -27.0%o; natural gas, -40.0%o; cement (limestone), 0.0%o. The proportions of these fuels and of cement in 1956 (Keeling, 1973a) p. 195. 0.0%o. In 1977 they were 0.304, 0.493, 0.188, and 0.015 according to Table 1 of United Nations (1978) p. 2, assuming the same proportion from cement. Hence the δ¹³C of industrial CO₂ was -28.1%o in 1956; -28.1%o in 1977. The weighted average (total of 2.96 × 10¹⁵ g C in 1956, 5.25 × 10¹⁵ g C in 1977 (Keeling et al., 1979b) -27.4%o. The δ¹³C of preindustrial CO₂ is found by the model to be -6.4%o (see Table 4), hence Rₒₒ/₁₃Rₛₒₒ is approximately 0.9791. This value was rounded to 0.980 in the calculations.
(10) Keeling et al. (1979a).
follows. First, as indicated in Table 3, data for the annual production of industrial CO$_2$ were fitted by the method of least squares to the function (cf. equation (2.16)):

$$\gamma_f = \gamma_{fo} e^{\mu t}$$ \hspace{1cm} (11.18)

over the time interval in question, t_1 to t_2, to obtain a value for the e-fold time, μ^{-1}. The cumulative production of CO$_2$ was assumed to obey the relationship (cf. equation (2.18) and Figs 8 and 9):

$$Q = (\gamma_{fo} / \mu) e^{\mu t}$$ \hspace{1cm} (11.19)

where μ^{-1} was given by the above curve fit, except rounded to the nearest year. The value of γ_{fo} / μ was then determined such that equation (11.18) exactly predicted the observed cumulative production from t_1 to t_2, i.e.:

$$\gamma_{fo} / \mu = (Q_2 - Q_1)/(e^{\mu t_2} - e^{\mu t_1}).$$ \hspace{1cm} (11.20)

The increase in atmospheric CO$_2$ was assumed to obey the relationship (cf. equation (2.19)):

$$N_a = N_{ao} + n_{ao} e^{\mu t}.$$ \hspace{1cm} (11.21)

The constant, n_{ao}, was determined such that equation (11.21) exactly predicted the observed amount of atmospheric CO$_2$ at t_1 and t_2, i.e.:

$$n_{ao} = (N_{a2} - N_{a1})/(e^{\mu t_2} - e^{\mu t_1}).$$ \hspace{1cm} (11.22)

The airborne fraction over the interval was then calculated by the expression:

$$r_a = (N_{a2} - N_{a1})/(Q_2 - Q_1).$$ \hspace{1cm} (11.23)

Finally, N_{ao} was calculated to be consistent with equation (11.21), i.e.:

$$N_{ao} = N_{a1} - n_{ao} e^{\mu t_1}.$$ \hspace{1cm} (11.24)

Next, the biospheric perturbation factor, β_a, was adjusted by trial so that the model predicted r_a, as determined above, within 1 part in 10^8. Since the total amount of carbon in any reservoir for an exponential source (cf. equation (2.19)), is given by:

$$N_i = N_{io} + n_{io} e^{\mu t}$$ \hspace{1cm} (11.25)

at any time, t, it follows (cf. equations (2.23) and (11.18)) that:

$$N_i = N_{io} + r_i Q$$ \hspace{1cm} (11.26)

where r_i is given by the model prediction.

The theoretical Suess Effect in reservoir i for either isotope was computed by equation (11.2), where Q was obtained according to equation (11.19), N_i was obtained via equation (11.26) and Δr_i was computed by the model.

For 13C the shift in 13C/12C isotope was also calculated to facilitate comparison with observational data.

The isotopic abundance of 13C in natural materials is almost always expressed in terms of its ratio to 12C. Conversion to this mode of expression from the 13C/12C ratios of the model and vice versa is accomplished by the formulas:

$$R = \tau_c/(1 + \tau_c)$$ \hspace{1cm} (11.27)

$$\tau_c = R/(1 - R)$$ \hspace{1cm} (11.28)
where r and R denote, respectively the 13C/12C and *C/C ratios of the substance under investigation, and *C denotes a rare isotope of carbon. For a carbon pool containing an amount of carbon-total, N, with corresponding amount of rare carbon isotope *N:

$$r = \frac{^*N}{^{12}N}$$ \hspace{1cm} (11.29)

while, consistent with equation (1.1):

$$R = \frac{^*N}{N}.$$ \hspace{1cm} (11.30)

The corresponding expressions for the relative variation from a standard ratio (cf. equation (1.25)) in the two modes are:

$$\delta C = \frac{R}{R_0} - 1$$ \hspace{1cm} (11.32)

$$\delta ^*C = \frac{r}{r_0} - 1$$ \hspace{1cm} (11.34)

where subscript, \bullet, denotes a standard ratio and where the symbol, $\delta ^*C$, denotes a $^*C/^{12}C$ ratio, relative to a standard.

To calculate the shift in $\delta ^{13}C$ the first step was to compute the theoretical atmospheric 13C Suess Effect at time, t_1, by the model. Then the preindustrial 13C/C ratio for atmospheric CO$_2$ was computed as a function of the shift in 13C/C ratio indicated by this Suess Effect (now regarded as an estimate of the observable Suess Effect, S_{ij}) and the observed $\delta ^{13}C$ value for atmospheric CO$_2$ in A.D. 1956. Specifically, the relative ratio, $^{13}R_{io}/^{13}R_0$, was first evaluated from the observations by the formula:

$$^{13}R_{io}/^{13}R_0 = \frac{(^{13}R_{o1}/^{13}R_0)/(^{13}S_{o1} + 1)}. \hspace{1cm} (11.37)$$

The isotopic shifts for all reservoirs at any time, t, were computed by essentially reversing the above procedure. First, from the 13C Suess Effect, $^{13}S_{ij}$, as computed by the model, the 13C/C isotopic ratio relative to standard was found by the formula:

$$^{13}R_i/^{13}R_0 = \frac{^{13}R_{io}}{^{13}R_{ao}} \left(\frac{^{13}R_{ao}}{^{13}R_0} \right) (^{13}S_{i} + 1)$$ \hspace{1cm} (11.38)

where the $^{13}R_{io}/^{13}R_{ao}$ were established from the equilibrium fractionation factors listed in Table 2. From the ratios, $^{13}R_i/^{13}R_0$, the corresponding $\delta ^{13}C$ values were computed by:

$$\delta ^{13}C_i = \frac{(^{13}R_{i}/^{13}R_0) (1 - ^{13}R_0) - 1}{1 - (^{13}R_{io}/^{13}R_{ao}) (^{13}R_{ao}/^{13}R_0) ^{13}R_0} - 1.$$ \hspace{1cm} (11.39)

The preindustrial 13C value of reservoir i was calculated by the same procedure but with S_i equal to zero in equation (11.38). Specifically:

$$\delta ^{13}C_{io} = \frac{(^{13}R_{io}/^{13}R_{ao}) (^{13}R_{ao}/^{13}R_0) (1 - ^{13}R_0) - 1}{1 - (^{13}R_{io}/^{13}R_{ao}) (^{13}R_{ao}/^{13}R_0) ^{13}R_0} - 1.$$ \hspace{1cm} (11.40)

11.3 Inclusion of an oceanic gravitational flux

To determine the theoretical Suess Effect using the four-reservoir model with an oceanic gravitational flux, F_g, included in the formulation, the approach will be to modify the calculations just described by explicitly including terms proportional to F_g. These terms will be evaluated in such a way that the steady-state parameters for the deep ocean are modified but not those for the surface ocean, on the grounds that the latter are better known from observational data than are the former. Specifically, equation (8.65), which relates to the exchange of rare isotopic carbon between surface and deep water for nonzero F_g, will be employed to evaluate the perturbation coefficient, *k_5, in place of equation (8.63). To reduce the complexity of the calculation, and since little evidence exists to support a time variable flux, only a constant gravitational flux, F_{go}, will be considered in the calculations at this point (i.e. B_5 will be set equal to zero). It follows that equations (8.62) and (8.64) which relate to the exchange of carbon-total with zero and nonzero F_{go}, respectively, lead to the same value for k_5. This is to be expected since a constant gravitational flux cannot perturb the distribution of carbon-total.

A separate calculation will now be made to estimate the magnitude of the flux, F_{go}. Since, as discussed in
subsection 8.6, neither data nor methodology are available to calculate this flux using the box diffusion model, the two reservoir model will serve as a substitute. Specifically, the perturbation coefficients for the return fluxes from the deep ocean, \(k_d\) and \(*k_d\), for the purpose of calculating \(F_{go}\), are made compatible with the steady-state equation (8.3) rather than being set equal to zero. In this way equation (8.14) can be employed in the calculation. Rewritten in terms of the deep water depth, \(h_d\), and the area of the oceans, \(A\), this expression is:

\[
F_{go} = k_{dm} h_d A \left(\frac{N_{do}}{W_d} - \frac{N_{mo}}{W_m} \right) \quad (11.41)
\]

i.e. the steady-state gravitational flux, in the two reservoir oceanic model, is proportional to the steady-state coefficient, \(k_{dm}\), and to the concentration in carbon-total different between surface and deep water \((N_{do} / W_d - N_{mo} / W_m)\). In computing \(k_{dm}\) we preserve a reasonable degree of correspondence at steady-state with the box diffusion model of Oeschger et al. (75) by solving the first equality of equation (8.16) for \(k_{dm}\) with isotopic fractionation ignored, i.e.:

\[
k_{dm}^{-1} = \left[\frac{14R_{mo}}{14R_{do}} - 1 \right] \frac{14\lambda}{1 - 14\lambda} \quad (11.42)
\]

where \(14R_{mo} / 14R_{do}\) is set equal to the value derived in subsection 11.2. The result, rounded to the nearest year, is:

\[
k_{dm} = 1/(1129 \text{ yr}).
\]

The global average vertical concentration gradient in carbon-total in sea water may be roughly established from several sets of published data, but no accurate gradient can be derived from these sets because of the necessity to consider data of questionable reliability to obtain results for all of the major oceans. Even the best of the published data are somewhat questionable. The chemical studies of the GEOSECS expeditions (Craig, 74) have produced an extensive set of new observations, but these data are still being evaluated and have not yet been brought out in suitable summary form.

The best known summary data for deep water are by Eriksson (59, p. 151), based on the Swedish Deep Sea Expedition (A.D. 1945 to 1948), by Postma (64, p. 274; Fig. 10) based on Russian Expeditions of the International Geophysical Year (I.G.Y.) (A.D. 1957 - 1958), and by Li (69, p. 5519; Fig. 5) based on expeditions of the Vema and Conrad (A.D. 1956 - 1966). These sources suggest that the world average is between 2.30 and 2.40 mmol \(\ell^1\). These data may be regarded as preindustrial because of the very small admixture of industrial CO2 which could occur in deep water up to now. Since the estimate of Eriksson was derived specifically for global model studies and is not inconsistent with the other sources, I shall adopt his value of 2.33 mmol \(\ell^1\) (28.0 g m\(^{-3}\)) as the average for all waters below 75 m depth.

For total dissolved inorganic carbon in surface water I will accept the estimate of Keeling (73b, p. 298) of 2.09 mmol \(\ell^1\) (25.1 mg m\(^{-3}\)) based on alkalinity and pH data of the same Russian I.G.Y. (Expeditions considered by Postma.) Carbon-total concentrations were originally calculated by Keeling (73b) using the dissociation constants of both Buch (51) and Lyman (57). Recent evidence (Mehrbach, 73; Takahaski, 76; Sundquist, 79) indicate that Lyman’s constant is more nearly correct than Buch’s, and I therefore choose this value over 2.06 mmol \(\ell^1\), based on Buch’s constants. These data have been corrected for industrial CO2 assuming a preindustrial atmospheric concentration of 290 ppm. With \(h_m\) and \(A\) evaluated according to Table 2, the gravitational flux is thus computed to be:

\[
F_{go} = 3.454 \times 10^{15} \text{ g of C yr}^{-1}.
\]

In Table 2 this flux is rounded to \(3.5 \times 10^{15}\). The steady-state abundance of carbon-total in the deep oceans, \(N_{do}\), to be compatible with the above calculation, is computed as a function of the concentration, \(N_{mo} / W_m\), of surface water and of its ratio to that of deep water which is given by the factor \(\beta_{mo}\) (see equation (8.28)), i.e.:

\[
N_{do} = \frac{h_d}{h_m} \left(\frac{N_{mo}}{W_m} \beta_{mo} \right) \quad (11.43)
\]

where \(W_d / W_m\) is replaced by \(h_d / h_m\) in accordance with equations (11.4) and (11.8) and where \(\beta_{mo}\) is equal to the concentration ratio:

\[
\beta_{mo} = 2.09/2.33.
\]

The steady state \(14C/C\) ratio of deep water relative to surface water, to be compatible with the assumption of isotopic fractionation in the gravitational flux, is computed by solving the first equality of equation (8.16) for \(R_{do}/R_{mo}\), i.e.:

\[
\frac{14R_{do}}{14R_{mo}} = \frac{14\alpha_{md}}{1 + 14\lambda/k_{dm}} \quad (11.44)
\]

(This equation is analogous to equation (11.16) for the atmosphere biosphere exchange.) For \(^{13}C\), since \(^{13}\chi\) is equal to zero (cf. equation (2.27)):

\[
\frac{13R_{do}}{13R_{mo}} = ^{13}\alpha_{md} \quad (11.45)
\]

The isotopic fractionation factor, \(\alpha_{md}\), is computed by the expression:

\[
\alpha_{md} = \alpha_{mg} + \left(\frac{N_{mo}}{N_{do}} \frac{h_d}{h_m} \right) (1 - \alpha_{mg}) \quad (11.46)
\]

where \(W_d / W_m\) is replaced by \(h_d / h_m\) in equation (8.17) as in the derivation of equation (11.43). The quantities \(N_{mo}, N_{do}\), and \(h_d / h_m\) are computed with the same values used to compute \(F_{go}\) by equation (11.41).
The isotopic ratios of deep water relative the atmosphere, R_{do}/R_{ao}, for both isotopes, are computed by the relationship:

$$R_{do}/R_{ao} = (R_{do}/R_{mo})(R_{mo}/R_{ao})$$ \hspace{1cm} (11.47)$$

where R_{mo}/R_{ao} is assigned the value computed previously for the case without gravitational flux, i.e. by use of equations (11.12) and (11.13).

11.4 Determination of preindustrial conditions

The four-reservoir model predicts perturbations of the carbon cycle against a background steady-state which ideally would be established without reference to that perturbation. But all but a few features of the carbon cycle when first observed were already affected by industrial CO$_2$. Indeed, the only chemical data used in the formulation of the present model which are practically free of influence of the industrial CO$_2$ perturbation are the measurements of deep ocean carbon. In a few other cases, notably respecting the land biosphere, the perturbations, although not negligible, are so small relative to the uncertainty in the estimated contemporary values that it would be unjustified to adjust the latter to reflect preindustrial conditions. But in other cases, such adjustments were attempted. If possible these were done without recourse to the model itself. For example, the concentration of carbon-total in surface ocean water was estimated from the presumed change in CO$_2$ partial pressure between the late nineteenth century and recent times (Keeling, 73b). In other cases the preindustrial values were calculated by the model itself to avoid inconsistency in calculating perturbations. A few of these parameters, for example the rare isotopic ratios of carbon in surface ocean water, provide inputs to the model which affect the values of the Suess Effect calculated for all of the reservoirs, i.e. they influence one or more of the values assigned to the perturbation coefficients, k_i, $*k_i$ or k_i^*, and hence influence the calculation of the elements of the matrix, r (equation (9.25)). In the remaining cases, the steady-state values are used only to establish the Suess Effect for the particular reservoir involved.

In subsection 11.2 and 11.3, above, all of the steady-state calculations are explained. But since the methodology is somewhat complex and difficult to trace back to the original data base, I have summarized in Table 4 the full set of preindustrial value for the standard case with the sources of data indicated by footnotes. If the inclusion of a gravitational flux leads to different values than otherwise, these values are included in the table below the corresponding values. They are enclosed in parentheses.

For the interested reader, the following additional comments are offered to aid in explaining the results listed in Table 4.

None of the assigned reservoir abundances, N_{ao}, are dependent on results of the perturbation model. The preindustrial atmospheric abundance, N_{ao}, depends, however, upon the CO$_2$ concentrations for the beginning and end of the time interval in which exponential growth in industrial CO$_2$ is assumed to have occurred, as discussed in the text accompanying equations (11.18) to (11.24), above.

The deep ocean abundance, N_{do}, by means of equation (11.43) was assigned a value consistent with the steady-state equation (11.41) used to establish the gravitational flux, F_{go}. If F_{go} is assumed to be zero, the

<table>
<thead>
<tr>
<th>Carbon total</th>
<th>13C</th>
<th>14C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{bo}</td>
<td>N_{ao}</td>
<td>N_{mo}</td>
</tr>
<tr>
<td>land biosphere</td>
<td>atmosphere</td>
<td>surface ocean</td>
</tr>
<tr>
<td>Notes</td>
<td>carbonates</td>
<td>either absent or included</td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>1560 Gt</td>
<td>(6)</td>
<td>0.9820</td>
</tr>
<tr>
<td>land biosphere</td>
<td>(7)</td>
<td>1.0090</td>
</tr>
<tr>
<td>surface ocean</td>
<td>(8)</td>
<td>1.0090</td>
</tr>
<tr>
<td>deep ocean</td>
<td>(9)</td>
<td>0.9972</td>
</tr>
<tr>
<td>(13)</td>
<td>2.64</td>
<td>2.69</td>
</tr>
<tr>
<td>(10)</td>
<td>1.0080</td>
<td>1.0080</td>
</tr>
<tr>
<td>(11)</td>
<td>0.99367</td>
<td>0.99371</td>
</tr>
<tr>
<td>(12)</td>
<td>0.9820</td>
<td>0.9982</td>
</tr>
</tbody>
</table>

Notes

1. Rounded from Table 2. Gt = 1015 g of C.
2. Rounded from Table 3.
3. By equation (11.5) using data from Table 2.
4. Based on equation (11.9) using data from Table 2.
5. Based on equation (11.43).
6. For 14C, by equation (11.16); for 13C, by equation (11.17) using data from Table 2.
7. For 14C, by equation (11.12); for 13C, by equation (11.13) using data from Table 2.
8. For 14C, computed as the product of $14R_{do}/14R_{mo}$ taken from Table 2, and $14R_{mo}/14R_{ao}$ as given above. For 13C, set equal to $13R_{do}/13R_{ao}$, above, in accordance with equation (11.14).
9. Same as above except that $13R_{do}/13R_{ao}$, above, in accordance with equation (11.14).
10. For both 13C and 14C, computed in accordance with equation (11.15) as the product of α_n, as quoted in Table 2, and R_{do}/R_{ao}, as given above.
11. Calculated by combining equations (11.36) and (11.37) to eliminate R_{do}/R_{ao}, and then evaluating the resulting expression with $\delta^{13}C_{bo}$ taken from Table 3, $\delta^{13}C_{bo}$ from Table 2, and $13S_{ch}$, calculated by the model for the standard case. The ratios are expressed to five decimal places to reveal small differences between cases.
12. By equation (11.46) as described in the text following that equation. Set equal to unity if gravitational flux is zero.
13. By equation (11.40) with $13R_{do}/13R_{ao}$ as above, $13R_{ao}/13R_{bo}$ as in this table, and $13R_{bo}$ from Table 2.
concentration of surface and deep water is required to be equal (consistent with equation (11.7)). Since it was desirable that the surface ocean concentration be the same in all cases (except when the parameter, h_{in} was varied) the deep water concentration, N_{do}/W_d, varies from case to case.

The isotopic ratio, R_{do}/R_{ao}, determined by equations (11.44) and (11.45) and hence the ratio R_{do}/R_{ao} established via equation (11.47) likewise varies with F_{go} for both rare isotopes. If F_{go} is zero, then, similar to the case for N_{do}, the deep water value is made to agree with that for surface water. The related ratio, R_{do}/R_{ao}, varies in a similar way with F_{go} (see equation (11.15)).

Because of the ambiguities associated with adapting the box diffusion model of Oeschger et al. (75) to the ocean with a gravitational flux, care was taken that none of the perturbation coefficients, k_{ij}, or k_{ij}' be expressed in terms of N_{do} or R_{do}. Indeed, if the gravitational flux, F_{go}, is equal to zero, the only time dependent relationships affected by the assignment of deep water steady-state values are the isotopic ratios, R_{do}/R_{ao} and the shift in 13C for deep water. The resulting variations in these latter ratios are so slight as to be of little interest.

The steady-state isotopic ratios relative to atmospheric 13C, both for reservoirs, R_{do}/R_{ao} and for solid carbonates, R_{co}/R_{ao}, were established solely in terms of fractionation factors and the steady-state exchange coefficients, k_{ij}. In all instances these assigned values were obtained independent of a consideration of perturbations. The calculated preindustrial 13C variations, from standard PDB, on the other hand, depend on knowing $R_{ao}R_{o}$, the preindustrial 13C/C ratio of atmospheric 13C relative to PDB. Therefore, as indicated by equation (11.37), these quantities, $\delta^{13}C_{io}$, differ from case to case as the preindustrial 13C atmospheric Suess Effect, $^{13}S_{io}$, varies. The differences are slight however: approximately 0.04% lower $^{13}C_{io}$ values are calculated when carbonate dissolution is included in the model, approximately 0.002% lower values when the gravitational flux is included. The latter differences do not appear in the table, since the δ^{13}C values are shown rounded to the nearest 0.01%.

If F_{go} is not zero, the time dependent isotopic ratio for deep water carbonate, R_{cd}, enters into the vertical source matrix, $[k_{ij}/R_{ao}]$ (see equation (10.44)) and the source vector $[^s\gamma/R_{ao}]$ (see equation (10.47)); it thus influences the predicted isotopic effects for all reservoirs. But the effect is far less than that which arises, because radioactive decay of biogenic carbonate has been neglected (see equation (11.15)).

11.5 Computational results for the four reservoir model

The four-reservoir model, with its parameters set according to the standard case listings in Table 2 and the industrial CO_2 source factors in Table 3, produces the results shown in Table 5. As an aid in explaining the significance of the equations of Sections 9 and 10 some of the intermediate computations are displayed as well as the desired reservoir fractions and isotopic effects. The results are arranged in matrices identified by the symbols of equations (9.7) to (9.26) and (11.1). The order of rows and columns is: land biosphere, atmosphere, surface ocean, and deep ocean.

| Table 5. Matrices used in the solution of the standard case without gravitational flux |
|---------------------------------|----------|----------|----------|----------|----------|
| Carbonate dissolution absent | | | | | |
| For carbon-13^a | | | | | |
| $[r_i] = \begin{bmatrix} 0.04545455 & 0.0122174 & 0 & 0 \\ 0 & 0.190528 & -0.913591 & 0 \\ 0 & -0.132802 & 1.138540 & 0 \\ 0 & 0 & 0.179494 & 0.0454545 \\ 0.0621212 & 0.041475 & 0 & 0 \\ -0.0166667 & 0.217872 & -0.100359 & 0 \\ 0 & 0.130943 & 0.325308 & 0.0621212 \\ 0 & 0 & -0.179494 & 0.0454545 \\ -0.0163667 & 0.029424 & 0 & 0 \\ 0 & 0.163667 & -0.799538 & 0.0163667 \\ 0 & 0 & 0.799538 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ |

| $[13k_{ij}] = \begin{bmatrix} 0.146150 & 0.541354 & 0.063145 & 0.146150 \\ 0 & 0.541354 & 0.249351 & 0.249351 \\ 0 & 0.140744 & 0.537198 & 0.537198 \\ 0 & 0.061036 & 0.241023 & 0.241023 \end{bmatrix}$ |

<table>
<thead>
<tr>
<th>For carbon-14</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\Delta r_i] = \begin{bmatrix} -0.002826 & -0.002564 & -0.010478 & -0.002826 \ -0.004157 & -0.006254 & -0.006342 & -0.004157 \ -0.010478 & -0.002564 & -0.006254 & -0.010478 \ -0.010478 & -0.004157 & -0.006254 & -0.010478 \end{bmatrix}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| $[\delta^{13}C_{io} - \delta^{13}C_{12}] = \begin{bmatrix} -0.000199 & -0.000047 & -0.000026 & -0.000021 \end{bmatrix}$ |

<table>
<thead>
<tr>
<th>Carbonate dissolution included</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For carbon-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[r_i] = \begin{bmatrix} -0.057182 & 0.541354 & 0.194269 & 0.194269 \ 0.812589 & 0.100904 & 0.100904 & 0.812589 \ 0.543956 & 0.543956 & 0.543956 & 0.543956 \ -0.650457 & -0.650457 & -0.650457 & -0.650457 \end{bmatrix}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| $[\Delta r_i] = \begin{bmatrix} -0.221966 & -0.021948 & -0.009269 & -0.493504 \\ -0.000029 & -0.025064 & -0.008999 & -0.000974 \end{bmatrix}$ |

<table>
<thead>
<tr>
<th>For carbon-14</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$[r_i] = \begin{bmatrix} -0.923736 & 0.812589 & 0.324057 & 0.324057 \ 0.194269 & 0.194269 & 1.767254 & 1.767254 \ 0.324057 & 0.324057 & -0.021617 & -0.021617 \ -0.601920 & -0.601920 & -0.000029 & -0.000029 \end{bmatrix}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| $[\Delta r_i] = \begin{bmatrix} -0.210669 & -0.004811 & -0.004811 & -0.004811 \\ -0.014321 & -0.004811 & -0.004811 & -0.004811 \end{bmatrix}$ |

Note
(a) $^{13}S_{io}$ is for A.D. 1978; $\delta^{13}C_{io} - \delta^{13}C_{12}$ is for A.D. 1956 to 1978; $^{13}S_{io}$ is for A.D. 1954.
If carbonate dissolution does not occur in the oceans, the model predicts that 14% of the industrial CO$_2$ produced between A.D. 1956 to 1978 has entered the land biosphere. The biospheric growth factor, β, for this case is equal to 0.29, i.e. for every 1% increase in atmospheric CO$_2$ from its preindustrial value, plant growth is assumed by the model to increase by 0.29%. This biospheric uptake is considerably smaller than predicted by Keeling (73a) and Bacastow and Keeling (73) because their two layer ocean models predicted a less effective oceanic uptake of industrial CO$_2$ than the present model and hence, by difference, a greater biospheric uptake. The predictions of the present model, for all reservoirs, are close to those of Oeschger et al. (75) for an exponentially increasing industrial CO$_2$ source with an e-fold time, μ^{-1}, of 35 yr. In particular, these authors derived the relative fractions:

$$r_b : r_a : r_m : r_d = 12.1\% : 52.8\% : 5.9\% : 29.2\%$$

while the present model predicts:

$$r_b : r_a : r_m : r_d = 14.6\% : 54.1\% : 6.3\% : 24.9\%.$$

This good agreement arises, of course, because the present model and its standard case were chosen to be compatible in most respects with the vertical diffusion model of Oeschger et al. (75).
This model provides a test of the proposal advanced by Woodwell et al. (78) that the land biosphere has in recent years released to the atmosphere much larger amounts of CO₂ than indicated by models in which the oceanic CO₂ transport is prescribed by the steady-state radioactive carbon distribution. According to Woodwell et al., the probable range in release of carbon from the biosphere owing to man’s activities is 4 to 8 Gt/yr. They believe that the release may be as high as 18 Gt/yr. The authors are aware that such large releases pose a problem for carbon cycle modelers. The authors state (loc. cit., p. 245):

“If the current appraisals are correct, the contemporary biotic release of carbon is approximately equal to the fossil fuel release. The total for both sources exceed 10 [Gt] annually. Of this about 2.3 [Gt] accumulates in the atmosphere. The remainder probably enters the oceans, but the mechanism for this remains puzzling. The apparently erroneous assumption that the biota is a contemporary sink for CO₂ arose because the data on oceanic mixing seem to show that the oceans have a limited capacity for absorbing CO₂ in the short run of years or decades ... and other sinks have seemed necessary. The problem is still more puzzling if the biota not only is not a sink for fossil fuel carbon but is an additional source of CO₂. The validity and appropriateness of the models of oceanic mixing are obviously in question ...”

An extreme “upper limit” for the oceanic uptake of CO₂ from all sources may be obtained for each of the four cases just considered repeating the calculations with the eddy diffusion coefficient, K, raised to such a high value that the oceans below the surface layer are in essence mixed instantaneously. Results of such a calculation are listed in Table 7, in which the value for K has been increased 100 fold with the biospheric growth factor, β₀, adjusted so that the predictable airborne fraction is the same as for the standard case. The exchanges of carbon for A.D. 1978 are displayed in Fig. 11. Without carbonate dissolution the upper limit for biospheric release of carbon to the air as CO₂ in 1978 is about 3.4 Gt; with dissolution it is about 4.6 Gt.

Table 7. Predictions for carbon-total with the eddy diffusion coefficient K of the standard case raised by a factor of 100

<table>
<thead>
<tr>
<th>Time interval:</th>
<th>1886 - 1956</th>
<th>1956 - 1978</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate dissolution</td>
<td>Absent</td>
<td>Included</td>
<td>Absent</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Reservoir fractions (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fb₀</td>
<td>-244.28</td>
<td>-309.71</td>
<td>-59.83</td>
<td>-80.41</td>
<td></td>
</tr>
<tr>
<td>Fb₉ₐ</td>
<td>81.26</td>
<td>81.26</td>
<td>54.14</td>
<td>54.14</td>
<td></td>
</tr>
<tr>
<td>Fb₈₉ₐ</td>
<td>5.79</td>
<td>11.15</td>
<td>2.61</td>
<td>5.81</td>
<td></td>
</tr>
<tr>
<td>Cp₉ₐ</td>
<td>258.23</td>
<td>608.02</td>
<td>103.09</td>
<td>232.21</td>
<td></td>
</tr>
<tr>
<td>Rates of change (Gt/yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ηb₀</td>
<td>2.00</td>
<td>5.68</td>
<td>6.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ηb₉ₐ</td>
<td>0</td>
<td>0.14</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ηb₈₉ₐ</td>
<td>-4.89</td>
<td>-6.19</td>
<td>-3.39</td>
<td>-4.56</td>
<td></td>
</tr>
<tr>
<td>ηb₉₉ₐ</td>
<td>1.62</td>
<td>1.62</td>
<td>3.07</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>Np₉₉ₐ</td>
<td>5.17</td>
<td>12.16</td>
<td>5.84</td>
<td>13.16</td>
<td></td>
</tr>
<tr>
<td>Np₉₉₉₉ₐ</td>
<td>0</td>
<td>0.10</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np₉₉₉₉₉₉ₐ</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11. Redistribution of industrial CO₂ as in Fig. 10 except that eddy diffusion coefficient, K, for vertical transport in the oceans is increased 100 fold from standard case.
The release is still higher if, also, the coefficient for CO\textsubscript{2} uptake by the oceans, \(k_{am} \), is increased by 50\% as in the sensitivity analysis of subsection 12.4, below. This increase in \(k_{am} \) leads to a predicted biospheric release of 5.1 Gt of carbon in A.D. 1978 without dissolution, 7.2 Gt with dissolution. The rates of release could be raised still further by arbitrarily increasing the gravitational flux of carbon, \(F_{so} \), as a function of the concentration of carbon in surface water, \(F_{so} \), i.e. by setting the perturbation parameter, \(\beta_{g} \), above zero. An increase in \(F_{so} \) turns out, however, to have very little effect on the predicted biospheric release of CO\textsubscript{2} unless values far in excess of unity are prescribed for \(\beta_{g} \). In any case the rates of biospheric release with \(\beta_{g} \) equal to zero are already large enough, when \(K \) alone is increased, to test the isotopic consequences of large biospheric releases compensated by large oceanic uptake, the main reason for my introducing this calculation.

An eddy diffusion coefficient, \(K \), 100 times the value calculated from the radiocarbon distribution is ridiculously high as a parameter of oceanic circulation. Such a value implies that \(^{14}\text{C}/\text{C}\) ratios for deep water are virtually the same as for pre-bomb surface water, whereas observed ratios (10 to 20\% lower) indicate circulation times of the order of 1000 yr. An abundance by other oceanic evidence also argues against a diffusion rate substantially larger than the value of \(K \) chosen for the standard case. If carbonate dissolution is included in the model, this dissolution is assumed to keep pace with the rapid circulation so that every part of the oceans remains in equilibrium with calcium carbonate sediments.

A more reasonable upper limit for biospheric release must remove from the presumed rapidly circulating oceanic reservoir most of the waters below 1000 meters, i.e. about three fourths of the ocean's volume. It follows that a reasonable upper limit for biospheric CO\textsubscript{2} release probably lies near 1 Gt/yr, perhaps 2 Gt/yr if the standard case value for \(k_{am} \) is significantly less than the true value. The calculation with high \(K \) is useful, however, to test how sensitive rare isotopic carbon is as a parameter of oceanic circulation.

Table 8. Reservoir fractions for carbon-total with various choices of input parameters for A.D. 1956 – 1978

<table>
<thead>
<tr>
<th>Parameter varied</th>
<th>(\beta_{a})</th>
<th>(r_{b})</th>
<th>(r_{a})</th>
<th>(r_{m})</th>
<th>(r_{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate dissolution absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard case</td>
<td>0.2905</td>
<td>14.61</td>
<td>54.14</td>
<td>6.31</td>
<td>24.94</td>
</tr>
<tr>
<td>(F_{bo}) (increased 20%)</td>
<td>0.2421</td>
<td>14.61</td>
<td>54.14</td>
<td>6.31</td>
<td>24.94</td>
</tr>
<tr>
<td>(h_{b}) (increased 20%)</td>
<td>0.3765</td>
<td>18.94</td>
<td>54.14</td>
<td>5.44</td>
<td>21.49</td>
</tr>
<tr>
<td>(k_{am}) (increased 50%)</td>
<td>0.2468</td>
<td>12.41</td>
<td>54.14</td>
<td>6.76</td>
<td>26.70</td>
</tr>
<tr>
<td>(K) (increased 100%)</td>
<td>-0.1189</td>
<td>-59.83</td>
<td>54.14</td>
<td>6.20</td>
<td>23.76</td>
</tr>
<tr>
<td>(\beta_{a}) (increased to 1)</td>
<td>0.2808</td>
<td>14.13</td>
<td>54.14</td>
<td>6.29</td>
<td>25.45</td>
</tr>
<tr>
<td>Carbon dissolution included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard case</td>
<td>-0.1137</td>
<td>-5.72</td>
<td>54.14</td>
<td>19.43</td>
<td>77.61</td>
</tr>
<tr>
<td>(F_{bo}) (increased 20%)</td>
<td>-0.0947</td>
<td>-5.72</td>
<td>54.14</td>
<td>19.43</td>
<td>77.61</td>
</tr>
<tr>
<td>(h_{b}) (increased 20%)</td>
<td>0.0081</td>
<td>0.41</td>
<td>54.14</td>
<td>17.12</td>
<td>68.39</td>
</tr>
<tr>
<td>(k_{am}) (increased 50%)</td>
<td>-0.2384</td>
<td>-12.01</td>
<td>54.14</td>
<td>21.80</td>
<td>87.07</td>
</tr>
<tr>
<td>(K) (increased 100%)</td>
<td>-1.5986</td>
<td>-80.41</td>
<td>54.14</td>
<td>5.81</td>
<td>232.21</td>
</tr>
<tr>
<td>(\beta_{a}) (increased to 1)</td>
<td>-0.1445</td>
<td>-7.27</td>
<td>54.14</td>
<td>19.14</td>
<td>80.81</td>
</tr>
</tbody>
</table>

Table 9. Isotopic predictions for the standard case without gravitational flux

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon dioxide:</td>
<td>Absent</td>
<td>Included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^{14}\text{C}) Suess Effect (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>land biosphere</td>
<td>-24.57</td>
<td>-24.71</td>
<td>-0.14</td>
<td>-24.70</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>atmosphere</td>
<td>-6.69</td>
<td>-7.14</td>
<td>-0.45</td>
<td>-6.69</td>
<td>-7.21</td>
<td>-0.52</td>
</tr>
<tr>
<td>surface ocean</td>
<td>2.49</td>
<td>2.22</td>
<td>-0.26</td>
<td>2.48</td>
<td>2.13</td>
<td>-0.35</td>
</tr>
<tr>
<td>deep ocean</td>
<td>2.63</td>
<td>2.61</td>
<td>-0.02</td>
<td>2.67</td>
<td>2.64</td>
<td>-0.03</td>
</tr>
<tr>
<td>carbon dioxide dissolution</td>
<td>Absent</td>
<td>Included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^{13}\text{C})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>land biosphere</td>
<td>-0.55</td>
<td>0.14</td>
<td>0.14</td>
<td>-0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atmosphere</td>
<td>-2.29</td>
<td>-2.51</td>
<td>-2.27</td>
<td>-2.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>surface ocean</td>
<td>-0.82</td>
<td>-0.90</td>
<td>-0.81</td>
<td>-0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deep ocean</td>
<td>-0.09</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

predicted shifts in \(\delta^{13}\text{C} \) for atmospheric CO\textsubscript{2} from A.D. 1956 to 1978 are:

\[
\delta^{13}\text{C}_{a2} - \delta^{13}\text{C}_{a1} = -0.55 \pm 0.14\%o
\]

The predicted \(^{13}\text{C} \) shift is closer to the observed value, if carbonate dissolution is included in the model, but the uncertainty in observations is so large compared with the shift, that this prediction is not particularly favored.

For the atmospheric \(^{14}\text{C} \) Suess Effect the predicted values for A.D. 1954 are:

\[
^{14}\text{S}_{a} = \begin{cases}
-2.51\%, & \text{carbonate dissolution absent} \\
-2.48\%, & \text{carbonate dissolution included}
\end{cases}
\]

12.2 Results for rare isotopic carbon

The isotopic predictions for the standard case appear in Table 9. They are recopied in more recognizable per mil and per cent notation from the matrix listings of Table 5 and are supplemented by listings for additional time periods and intervals. To gain a perspective as to the reasonableness of these predictions it is worthwhile to compare them to available observational data. The
The best estimate of the observed 14C Suess Effect for A.D. 1954 is difficult to obtain from the literature values listed in Table 1, because the effect was probably increasing rapidly after A.D. 1940, and because some of the data are for samples involving several years of tree growth. To obtain a best estimate for A.D. 1954 based on these data, Bacastow and Keeling (73) used a six reservoir model which they forced to reproduce as closely as possible the data of Lerman et al. (70) for the 1860s and the data of these same investigators and of Suess and his coworkers for observations after A.D. 1940. They deduced for A.D. 1954:

$$14S_a = \begin{cases}
-2.8\% \text{, relative to preindustrial conditions} \\
-2.5\% \text{, relative to the } \Delta^{14}C \text{ scale (Broecker 59).}
\end{cases}$$

The same calculation indicates a Suess Effect of about 0.3% in the 1860s, consistent with the observations of Lerman et al. (70) that tree rings during that decade exhibit 14C/C ratios close to zero on the $\Delta^{14}C$ scale. A model similar to the present one, but with the actual industrial CO$_2$ source used instead of an exponential approximation (Bacastow and Keeling, unpublished), leads to predicted values near -2.3%, thus -0.5% less negative than the observations of Lerman, Suess and their coworkers.

This lack of agreement is not a strong basis for rejecting the model, however, because, as indicated by the scatter of values in Table 1, the observations are probably not reliable to much better than 0.5%. But a more serious problem, discussed above in the introduction, is the lack of evidence for a steady-state for 14C prior to the industrial era. Variations in solar activity may produce variations in 14C production which lead to observed values less negative than predicted on the assumption of steady 14C production. But until more is known about the solar phenomenon (see for example, Stuiver and Quay (79)), it is not possible to obtain a good time varying function for the natural 14C production. The model produces one definite result, however: the predictions are about the same whether carbonate dissolution occurs or not. Thus the 14C atmospheric Suess Effect cannot be used to distinguish these two possibilities.

For surface ocean water, observational data are meager, as indicated in Table 1. For 13C the results of a single coral from Bermuda are available for comparison with prediction. For A.D. 1956 to 1978 the observations of this coral indicate:

$$\delta^{13}C_m - \delta^{13}C_{m1} = -0.24\%$$

whereas the model predicts:

$$\delta^{13}C_m - \delta^{13}C_{m1} = \begin{cases}
-0.26\% \text{, carbonate dissolution absent} \\
-0.35\% \text{, carbonate dissolution included.}
\end{cases}$$

With respect to preindustrial times the observations indicate a shift or -0.50%a, whereas the model predicts -0.42% if dissolution is absent, -0.56%a, if present. Predictions and observations agree within experimental precision (which is the order of 0.1%a). But the shifts are so small that it is not possible to decide whether the observations actually support either prediction.

For 14C, data are available for two corals but the nineteenth century coral values of Nozaki et al. (78) are too scattered to estimate a Suess Effect. For the Florida coral of Druffel and Linick (78), which yielded steady nineteenth century values, these authors themselves estimated that:

$$14S_m = -1.2\%$$

whereas the model predicts:

$$14S_m = \begin{cases}
-0.90\% \text{ with carbonate dissolution absent} \\
-0.89\% \text{ with carbonate dissolution included.}
\end{cases}$$

The agreement is good, but the variations again are too small to gain much support for the model. As in the case of the atmospheric effect, $14S_a$, the predictions are about the same whether carbonate dissolution occurs or not.

For the land biosphere and deep oceans no observational data are available to estimate isotopic shifts on a global scale. Thus the above comparisons for the atmosphere and the surface oceans are the only controls available to test the standard case. About all that can be stated positively about these is that, for both isotopes, the agreement is sufficiently good to justify using the standard case for a further examination of isotopic effects.

12.3 The Stuiver approximation

Stuiver (78) estimated the shift in 13C of atmospheric CO$_2$ on the basis of predicted values of the 14C Suess Effect. As shown in Sections 2 and 3, his approximation is consistent with a model which neglects isotopic fractionation during the redistribution of industrial CO$_2$, but preserves the isotopic ratio difference between industrial and atmospheric CO$_2$. In Table 10 predictions for the standard case of the four reservoir model are shown for A.D. 1956 to 1978 for both rare isotopes, with and without fractionation.

Since the Suess Effect for either isotopic is proportional to the reservoir fraction difference, Δr_i, the Stuiver approximation can be checked through the relation:

$$\Delta^{13}r_i = -^{13}e_{fa} \Delta^{14}r_i$$

(12.1)
which follows from equations (2.42) and (11.2). As can be determined from Table 10, the approximation holds for all reservoirs of the four reservoir model. It also holds if the perturbation exchange coefficient, \(k_e \), and gravitational flux, \(F_{go} \), are non-zero although these cases are not shown in the table. (Also the approximation was found to hold to the maximum number of 8 decimal places printed in the computer printouts.) A remarkable feature of the approximation is that the predictions are the same for \(\Delta r_i \) whether carbonate dissolution is present or absent. Thus the differences in prediction which occur for these two cases, when fractionation is included, are not closely dependent on the different fractions of CO2 entering the various reservoirs, but are associated directly with different degrees of isotopic fractionation for the two cases.

Table 10. Isotopic predictions with and without fractionation for the standard case without gravitational flux, A.D. 1956-1978

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>(\Delta r_i) (%0)</th>
<th>(\delta^{13}C_i - \delta^{13}C_i^{(a)}) (%0)</th>
<th>(\Delta r_i) (%0)</th>
<th>(\delta^{14}C_i^{(c)}) (%0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no fractionation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>land biosphere</td>
<td>-0.3689</td>
<td>-0.18</td>
<td>-0.19</td>
<td>-18.47</td>
</tr>
<tr>
<td>atmosphere</td>
<td>-0.5426</td>
<td>-0.58</td>
<td>-0.58</td>
<td>-27.13</td>
</tr>
<tr>
<td>surface ocean</td>
<td>-0.2199</td>
<td>-0.22</td>
<td>-0.21</td>
<td>-27.13</td>
</tr>
<tr>
<td>deep ocean</td>
<td>-0.8685</td>
<td>-0.07</td>
<td>-0.02</td>
<td>-45.53</td>
</tr>
<tr>
<td>with fractionation and carbonate dissolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>land biosphere</td>
<td>-0.3271</td>
<td>-0.16</td>
<td>-0.16</td>
<td>-19.31</td>
</tr>
<tr>
<td>atmosphere</td>
<td>-0.4811</td>
<td>-0.52</td>
<td>-0.52</td>
<td>-28.21</td>
</tr>
<tr>
<td>surface ocean</td>
<td>-0.3624</td>
<td>-0.35</td>
<td>-0.35</td>
<td>-10.86</td>
</tr>
<tr>
<td>deep ocean</td>
<td>-1.4321</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-38.36</td>
</tr>
<tr>
<td>with fractionation but carbonate dissolution absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>land biosphere</td>
<td>-0.2826</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-19.31</td>
</tr>
<tr>
<td>atmosphere</td>
<td>-0.4157</td>
<td>-0.45</td>
<td>-0.45</td>
<td>-28.37</td>
</tr>
<tr>
<td>surface ocean</td>
<td>-0.2654</td>
<td>-0.26</td>
<td>-0.26</td>
<td>-10.78</td>
</tr>
<tr>
<td>deep ocean</td>
<td>1.0478</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-44.91</td>
</tr>
</tbody>
</table>

(a) Change in \(\delta^{13}C \) is from A.D. 1956-1978; \(\delta^{14}C \) Suess Effect, \(\delta^{14}C_i^{(c)} \), is for A.D. 1978.

For \(^{13}C \) when fractionation is neglected, the predictions for the atmospheric and biosphere are about 31% too high with carbonate dissolution absent, about 13% too high with dissolution included. For the other two reservoirs the predictions for dissolution absent and included are, respectively, 17% and 39% too low. In either case the errors are so large as to rule out use of the approximation except for very course estimates. With respect to the \(^{14}C \) Suess Effect the relative errors range from 1 to 4% except for the deep oceans with carbonate dissolution included, for which the prediction is 13% too large. This latter case is of little interest, however, because the Suess Effect is so nearly negligible for this reservoir. The errors for \(^{13}C \) and \(^{14}C \), for all reservoirs except the deep ocean, turn out to be of opposite sign so that the Suiver approximations, in which the \(^{14}C \) Suess Effect is used to estimate the \(^{13}C \) effect, is even in somewhat greater error than the model predictions without fractionation for \(^{13}C \) taken separately.

If the fractionation factor for CO2 uptake by the oceans is close to unity, rather than equal to 0.986 as assumed in the standard case (see subsection 12.4 below), the Suiver approximation is closer to being correct than otherwise, but the improvement in prediction is still not sufficient to render the method reliable.

12.4 Sensitivity tests for \(^{13}C \) and \(^{14}C \)

To determine the degree to which the predicted Suess Effects of the four-reservoir model are sensitive to likely uncertainties in the model abundances and coefficients, fourteen model parameters were varied over ranges chosen to reflect these uncertainties. The results for the atmosphere and surface ocean are summarized in Figs 12 and 13. For the case where carbonate dissolution is absent, they are also listed in Table 11. For \(^{13}C \) the shifts in \(\delta^{13}C \) are displayed as being more convenient to study than the related \(^{13}C \) Suess Effect.

Fig. 12. Shift in \(\delta^{13}C \) of surface oceans (\(\delta^{13}C_s \)) versus atmosphere (\(\delta^{13}C_a \)) from A.D. 1956 to 1978 predicted by the four reservoir model of Fig. 6 for various choices of input parameters as defined in Tables 2 and 3. \(\alpha, \beta \) is an abbreviation for \(\frac{\delta^{13}C}{\delta^{14}C} \). Dashed circles enclose observed values as discussed in the text. Upper plot: carbonate dissolution absent. Lower plot: carbonate dissolution included.
Fig. 13. Theoretical 14C Suess Effect of surface ocean (amb) versus atmosphere (amb) in A.D. 1954 predicted by the four-reservoir model of Fig. 6 for various choices of input parameters as defined in Tables 2 and 3. Dashed circles enclose probable true values as discussed in the text. Upper plot: carbonate dissolution absent, Lower plot: carbonate dissolution included.

Since the choices of ranges are not critical to a sensitivity analysis, they will be only briefly explained.

The most uncertain parameters for carbon-total are probably the land biospheric abundance, \(N_{bo} \), and the air-to-sea exchange coefficient, \(k_{am} \). I have raised the values of both by 50% in the sensitivity tests. For \(ha \), which represented the depth of oceans having the same amount of carbon-total as the atmosphere, and for \(F_{bo} \), the rate of uptake of carbon-total by the land biosphere, the values were raised by 20%. Regarding \(ha \), this increase essentially overcomes the bias introduced because a typical deep water concentration of carbon was used to establish its value. For \(F_{bo} \) the choice is arbitrary: the likely error depends not only on uncertain knowledge of photosynthesis uptake of carbon by land plants but also on what fraction of the total to exclude from the model as pertaining to short cycled carbon. For all of these parameters except \(ha \) the values could just as well have been proportionally lowered. The isotopic shifts for these cases were calculated and found to be very nearly equal in magnitude but opposite in sign.

For the oceanic CO₂ evasion factor, \(\xi \), and the surface ocean perturbation function, \(*\phi_m \), the values were raised to those found for A.D. 1978 by a non-linear model with similar parameterization (Bacastow, 79). These choices thus exaggerate somewhat the shortcomings of the present model, since the average effect of variable \(\xi \) and \(*\phi_m \) will be less than the extreme changes from preindustrial times to the latest year considered in the model. For calculations involving carbonate dissolution, the change in \(\xi \) was made proportionally the same as for the case of no dissolution.

To test the possibility that the gravitational flux may have increased in response to human activities, the perturbation factor, \(\beta_g \) was raised from zero to unity. This was a logical but arbitrary choice since there is no evidence that the gravitational flux has varied.

With respect to isotopic fractionation, the factors, \(13\alpha_{ij} \), were all arbitrarily raised by 4 per mil. For 14C the factors, \(14\alpha_{ij} \), as in the standard case, were determined as the squares of the 13C factors.
Table 11. Shift in \(\delta^{13}C \) from A.D. 1956 to 1978 for various choices of input parameters without carbonate dissolution

<table>
<thead>
<tr>
<th>Parameters varied</th>
<th>(\delta^{13}C) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>biosphere</td>
</tr>
<tr>
<td>Standard case</td>
<td>-0.1386</td>
</tr>
<tr>
<td>Variations within the range of uncertainty</td>
<td></td>
</tr>
<tr>
<td>(N_{bo}) (increased by 50%)</td>
<td>-0.1002</td>
</tr>
<tr>
<td>(F_{bo}) (increased by 20%)</td>
<td>-0.1539</td>
</tr>
<tr>
<td>(h_{o}) (increased by 20%)</td>
<td>-0.1403</td>
</tr>
<tr>
<td>(k_{am}) (increased by 50%)</td>
<td>-0.1269</td>
</tr>
<tr>
<td>(\alpha_{am}) (increased by .004)</td>
<td>-0.1444</td>
</tr>
<tr>
<td>(\alpha_{eq}) (increased by .004)</td>
<td>-0.1463</td>
</tr>
<tr>
<td>(\alpha_{m}) (increased by .004)</td>
<td>-0.1419</td>
</tr>
<tr>
<td>(\alpha_{m}) (increased by .004)</td>
<td>-0.1386</td>
</tr>
<tr>
<td>(\phi_{am}) (increased by 0.004)</td>
<td>-0.1425</td>
</tr>
<tr>
<td>(13R_{af}/13R_{sm}) (increased by 9.445)</td>
<td>-0.1369</td>
</tr>
<tr>
<td>(13R_{af}/13R_{sm}) (increased by 1.107)</td>
<td>-0.1418</td>
</tr>
<tr>
<td>(13R_{af}/13R_{sm}) (increased by 1.107)</td>
<td>-0.1295</td>
</tr>
<tr>
<td>(13R_{af}/13R_{sm}) (increased by 1.107)</td>
<td>-0.1653</td>
</tr>
</tbody>
</table>

For the air to sea uptake factor, \(\alpha_{am} \), the value is not known even within 4\%. Laboratory experiments involving the absorption of CO\(_2\) in an alkaline solution (Craig, 53), suggest a preference for \(^{12}\)C over \(^{13}\)C of about 14\%. This value was therefore chosen for the standard case. Recently the fractionation effect for CO\(_2\) gas in water has been found to be approximately 1\% (Schönleber, 76). If the rate determining step in CO\(_2\) uptake is diffusion in a liquid boundary layer, as is often supposed (Broecker, 74, p. 125; Skirrow, 75, p. 134; Kester, 75, p. 511), then the fractionation may be close to the equilibrium value (about + 1\%) as pointed out by Tans (78, p. 34). Given the large uncertainty in \(\alpha_{am} \), all sensitivity calculations were repeated with an alternative standard case in which \(\alpha_{am} \) was set equal to unity. For the atmosphere and surface the results are shown in Figs 14 and 15.

The predicted Suess Effect for the land biosphere is of little interest because large inhomogeneities in plant materials prevent any reliable direct estimate of changes in global average isotopic ratios. For the deep ocean the Suess Effect for either isotope is too small to be worth examining.

For the atmosphere and surface oceans, on the other hand, model predictions are worth comparing with the observational data discussed in subsection 12.2. Hence it is the results of the sensitivity calculations for these two reservoirs that are displayed in Figs 12 - 15. For \(^{13}\)C and \(^{14}\)C dashed circles have been drawn to enclose...
all predictions which lie, respectively, within 0.1% and 0.2% of the observed values discussed in subsection 12.2. For the atmospheric Suess Effect, since the observations do not take into account a modulation in the 14C source owing to variable solar activity, I have tried to allow for this very approximately using the results of a stepped model with the actual CO$_2$ production data as input, similar to the procedure of Bacastow and Keeling (73). I have not attempted, however, to adjust similarly the surface ocean Suess Effect because such an adjustment would be small relative to the uncertainty in the observed value. These circles very roughly display the probable true values assuming that the errors in the observations data are a result only of analytical uncertainties, not of sampling bias.

In all but a very few cases the predictions cluster relatively close to the standard case values. The only parameters which produce significantly different predictions are the 13C/C ratio of industrial CO$_2$, 13R$_f$ (only for 13C), the air-to-sea steady-state exchange coefficient, K_{am} (mainly for 14C), and large eddy diffusion coefficient, K (for both isotopes). The small influence of variations in the other parameters is not without interest, however. For example, the minor effect of leaving out the gravitational flux might not have been anticipated from reading the recent literature on the importance of this flux to isotopic calculations (Craig, 71).

![Diagram](attachment:image.png)

Fig. 15. Same as Fig. 13 except that 13R$_{am} = 1.0$.

<table>
<thead>
<tr>
<th>Parameters varied</th>
<th>14C Suess Effect in A.D. 1954 for various choices of input parameters without carbonate dissolution</th>
<th>Sphere</th>
<th>Atmosphere</th>
<th>Surface Ocean</th>
<th>Deep Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{bo} (increased by 50%)</td>
<td>-0.852</td>
<td>-2.435</td>
<td>-0.969</td>
<td>-0.094</td>
<td></td>
</tr>
<tr>
<td>F_{bo} (increased by 20%)</td>
<td>-1.232</td>
<td>-2.455</td>
<td>-0.878</td>
<td>-0.095</td>
<td></td>
</tr>
<tr>
<td>h_b (increased by 20%)</td>
<td>-1.159</td>
<td>-2.571</td>
<td>-1.059</td>
<td>-0.117</td>
<td></td>
</tr>
<tr>
<td>k_{am} (increased by 50%)</td>
<td>-0.979</td>
<td>-2.149</td>
<td>-0.996</td>
<td>-0.109</td>
<td></td>
</tr>
<tr>
<td>α_{ab} (increased by 0.004)</td>
<td>-1.132</td>
<td>-2.494</td>
<td>-0.895</td>
<td>-0.097</td>
<td></td>
</tr>
<tr>
<td>α_{sw} (increased by 0.004)</td>
<td>-1.138</td>
<td>-2.508</td>
<td>-0.900</td>
<td>-0.097</td>
<td></td>
</tr>
<tr>
<td>α_{ow} (increased by 0.004)</td>
<td>-1.137</td>
<td>-2.506</td>
<td>-0.900</td>
<td>-0.097</td>
<td></td>
</tr>
<tr>
<td>ξ (increased to 9.445)</td>
<td>-1.136</td>
<td>-2.508</td>
<td>-0.900</td>
<td>-0.098</td>
<td></td>
</tr>
<tr>
<td>$*\phi_m$ (increased to 1.107)</td>
<td>-1.161</td>
<td>-2.558</td>
<td>-0.886</td>
<td>-0.096</td>
<td></td>
</tr>
<tr>
<td>Gravitational flux included</td>
<td>F_{co} (increased from 0 to 3.5 Gt/yr)</td>
<td>-1.131</td>
<td>-2.493</td>
<td>-0.880</td>
<td>-0.088</td>
</tr>
<tr>
<td>β_s (increased from 0 to 1)</td>
<td>-1.132</td>
<td>-2.492</td>
<td>-0.879</td>
<td>-0.088</td>
<td></td>
</tr>
<tr>
<td>Large variations</td>
<td>K (increased 100 fold)</td>
<td>-0.993</td>
<td>-1.863</td>
<td>-0.125</td>
<td>-0.087</td>
</tr>
<tr>
<td>K (increased 100 fold) and k_{am} (increased 50%)</td>
<td>-0.831</td>
<td>-1.446</td>
<td>-0.145</td>
<td>-0.096</td>
<td></td>
</tr>
<tr>
<td>α_{sw} (increased to 1)</td>
<td>-1.135</td>
<td>-2.502</td>
<td>-0.901</td>
<td>-0.098</td>
<td></td>
</tr>
</tbody>
</table>
When α_{am} is changed to unity and new sensitivity calculations made for the other parameters previously varied (Figs 14 and 15), the results for 14C are almost unchanged, reflecting the small influence of isotopic fractionation on the redistribution of 14C from industrial CO$_2$ injections. But for 13C the results are considerably different. All of the atmospheric values are considerably higher, while the surface ocean values are slightly lower. Of particular interest is that the results with large K are distinctly different from standard K for both atmospheric and oceanic 13C. This is in sharp contrast to the prediction with 13Rf, set equal to 0.986. In the latter case the atmospheric 13C ratio with high K is indistinguishable from the standard case.

Given the present state of knowledge of isotopic distributions in the carbon cycle, what can we expect to learn from observations of the Suess Effect? If nuclear bomb tests had not profoundly altered the relationships for 14C after A.D. 1954, this isotope would almost surely be the more valuable isotopic tracer to establish partitioning of industrial CO$_2$ between the biosphere and oceans. The 14C/13C ratio of surface ocean water would not be in doubt, and thus k_{am} would be securely established. One would be able to choose easily between the standard case and that for rapid oceanic mixing, parameterized by large K. Even with our limited ability to establish the small shifts in 14C up to A.D. 1954 this isotope appears to be as likely as 13C to increase our understanding of the industrial CO$_2$ partitioning up to the present time. If reliable 14C data from tree rings before A.D. 1954 become available, it may be possible to draw conclusions as to whether the oceans are capable of absorbing large amounts of industrial CO$_2$ as demanded by Woodwell et al. (78).

For 13C, there are serious difficulties in interpreting the observations even if they are reliable reflections of global perturbations. Several crucial global factors remain uncertain. In the first place, the predicted values of 13C, especially for the atmosphere, are closely tied to the 13C/14C ratio of industrial CO$_2$, 13RF. This means that we need to know how that ratio has varied as a function of time from one fuel to another and from one source region to another. For natural gas, because its isotopic content is so variable (Schwarz, 70), this information is especially important. As long as natural gas contributes such a large fraction to fossil fuel as it does today, the average 13C/14C for industrial CO$_2$ may remain uncertain by as much as 2%o. Even if the 13C/14C ratio of each major fuel has remained nearly constant over the time intervals of interest (which may not be true), the shift from coal to petroleum, and more recently to natural gas means that accurate predictions of 13C changes will require that 13RF be treated as a time dependent parameter in models after approximately A.D. 1945.

The marked dependence of predictions on the fossil fuel isotopic ratio, 13RF, has not previously emphasized, but illustrates a characteristic weakness in using stable isotopes to elucidate geochemical processes: isotopic ratios of natural substances often furnish not much more than better data on hitherto poorly known fractionation factors. Thus even if 13RF becomes well established, observations are likely to tell us more about the correct value of the air-sea fractionation factor, α_{am} than about partitioning of industrial CO$_2$, until the global average and regional variation of α_{am} are independently determined to high precision.

In spite of these problems, 13C as a tracer has the distinct advantage that it will continue to reflect man-induced distributions of the carbon cycle in the decades to come. If fuel use continues to grow even at a moderate pace of, say, only 2%o per year, the average 13C/14C ratios for the atmosphere and surface ocean water in 35 yr will shift as much as during the past 100 yr. By carefully measuring these shifts and also by improving our knowledge of fractionation factors by deliberate experiments, it may be possible from 13C studies to learn useful details about the fate of industrial CO$_2$.

Acknowledgements — The present article is an outgrowth of discussions with Dr. Pieter Tans, who spent the past year as a postdoctoral fellow with my group. I owe largely to him and to his former professor, Dr. Wilhelm Mook, of Groningen University, the motivation to carry out the present analysis. Also, I appreciate very much Dr. Tans' reading of the completed manuscript with a critical eye to the equations. I also thank Drs. Robert Bacastow, Tim Linick, Yoschiiyuki Nozaki, Minze Stuiver, Hans Suess, Karl Turekian, and Ms. Ellen Druffel for insight into theory and practice of isotopes and modeling which they shared with me. Thanks are also due to Mr. David Moss for advice on use and maintenance of the Interdata minicomputer used to carry out the calculations, to Mr. William Bollenbacher for reviewing the first sections of the article from the point of view of an undergraduate student, and to Mrs. Alane Herron for help with the very considerable task of running the computer calculations and assembling the data. The cost of computations and preparing the article for publication were borne by the Climate Dynamic Program of the National Science Foundation under Grant NSF ATM-77-25141.

References

R.A. Berner. (1976) The solubility of calcite and aragonite in seawater at atmospheric pressure and 1% oceanic salinity. J. Geol. 84, 715-724.

