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The Suess Effect: 13Carbon-14Carbon Interrelations 
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The Suess Effect is a term which has come to signify the decrease in 14C in atmospheric  CO2 owing to ad- 
mixture o f  CO 2 produced by the combust ion of  fossil fuels. This term is here extended, as a concept, to 
the shifts in isotopic ratio o f  both 13C and 14C in any reservoir of  the carbon cycle owing to anthropo-  
genic activities. To explain this generalized Suess Effect a four reservoir global model of  the natural  car- 
bon cycle is developed in which isotopic fractionation and radioactive decay are fully taken into account.  
The model includes the cases in which the deep ocean is treated either as a single undifferentiated box 
model reservoir or is vertically differentiated with eddy diffusion governing the transport  of  carbon. 
Also, the governing equations are expressed with sufficient generality to apply simultaneously to both 
rare isotopes. In so far as possible, the model is expressed without approximation of  the isotopic processes 
even though this leads to non-linear differential equations to describe the rates of  change of  rare isotopic 
carbon within carbon reservoirs. Linear approximations are also developed and solved using the method 
of  Laplace t ransforms.  The sensitivity o f  the predicted Suess Effects to uncertainties in the assigned 
values of  the model parameters  is investigated in detail, including estimates of  some of  the effects of  
linearizing the governing equations.  

The approximation of  Stuiver, in which the atmospheric  Suess Effect is assumed to be 0.018 times the 
corresponding effect for 24C, is examined in detail and shown to arise when both isotopic fractionation 
and radioactive decay are left out o f  the model.  This approximation,  al though correct as to order of  
magni tude,  is found to be too imprecise to .be recommended in modeling studies. 

As found in previous work, the predicted atmospheric  Suess Effect for 13C for a given airborne 
fraction o f  industrial CO2 is o f  similar magni tude  whether the land biosphere has  been a net source or 
sink o f  carbon during recent times. On the other hand,  the corresponding effect for a surface ocean water 
is considerably smaller than  otherwise if the land biosphere has been a source o f  CO2 instead of  a sink. 
The model is thus useful in indicating the need to consider isotopes in several reservoirs simultaneously.  

Al though the emphasis  is on formulat ing models rather than surveying and interpreting data, obser- 
vational data are summarized and compared with model predictions. The oceanic data are seen to be too 
meager as yet to help settle the question o f  biospheric responses to man ' s  activities. 

List of symbols d, 

d, 
The numbers in parentheses refer to the first equation 

in which the symbol appears. Symbols in parentheses e, 
denote steady state values. Symbols for chemical ele- F, (F0), 
ments (e.g. C or Ca) are not listed. 

The following algebraic symbols are used: Fij, (Fio, 
Ai, average area of  oceanic reservoir i (8.50) Fij 0), 
A(z), area of  oceans at depth z (8.49) Fcij, 
a, subscript for atmospheric reservoir (1.2) 
aca, aco3, chemical activity of  subscripted 
etc., chemical species (10.49) 
b, subscript for land biospheric reser- 

voir or for an unspecified reservoir 
in contact with the atmosphere (2.4) 

Ci, (Cio) abundance of  calcium, or calcium 
and magnesium, in reservoir i (10.3) 

c, subscript for calcium or biogenic 
carbonate (10.15) 

229 

* Fij, (*Fio, 
*rw), 
Fg, (F~), 

Fcg, (FcgO), 

Fpg, :Pp~o), 

operator for differentiation (2.4) 
subscript for subsurface ( "deep" )  
ocean reservoir (8.1) 
natural logarithm base (2.10) 
flux of  carbon-total emerging from 
an unspecified reservoir (4.1) 
flux of  carbon-total from reservoir 
i t o j  (3.2) 
same for calcium from oceanic 
reservoir i to j (10.15) 
same for laC or 14C (3.4) 

oceanic gravitational flux of  
carbon-total (8.1) 
oceanic gravitational flux of  
carbon-total in the form of  
carbonate (lO. 15) 
same for carbon-total in the form 
of  particulate organic carbon (10.33) 



230 Charles D. Keeling 

f ,  

g, 

g, 
ha, 

hb 

i, 
J(z, O, 

It, 

k) 

ki, 

k i '  , 

k ~  

*kij, 
K, 

Ki, 

KCaCO3, 
KMgCOs, 
Ksp, 

Kspc, 

KspM, 

¢ 
m, 

N, (No) 

N~, (N~) 

*Ni, (*Nio) 
n) 
no, 
ni, 

*ni, 
nio, 

general function with derivations, *n/0, 
f ' , f " ,  ... (4.1) o, 
subscript for oceanic gravitational 
flux (8.1) PC%, 
special column vector (9.21) Pi, (P~) 
depth of  ocean water containing 
the same amount of  inorganic *Pi, (*Pio) 
carbon-total as the atmosphere in p, 
preindustrial times (11.3) 
depth of  oceanic layer i below sea Q, 
surface (8.49) 
general subscript (1.1) q (z, t), 
rate of  regeneration of  inorganic 
carbonate-total from particulate R, 
organic carbon and biogenic 
carbonate at depth z in subsurface Ri, 
ocean water per unit volume at 
time t (8.49) Rf, 
second general subscript (1.6) 
steady state transfer coefficient for R O, 
carbon-total for the flux emerging R,yi , 
f rom an unspecified reservoir (4.5) 
matrix of  perturbation transfer 
coefficients (9.12) ri, 
(i = 1 to 6) perturbation transfer 
coefficient for carbon-total for r, 
reservoir i (5.6) *ri, 
(i = 1 to 6) same for 13Cor 14C (6.19) 
(i = 7 to 10) virtual source coeffi- 
cient for reservoir i (6.19) 
steady state transfer coefficient for 
carbon-total from reservoir i t o j  (2.4) r ,  
same from IsC or 14C (6.2) rc e ,  
oceanic vertical eddy diffusion Si, 
coefficient (8.51) 
(i = 0, 1, or 2) thermodynamic Sij, 
equilibrium quotients of  carbonic 
acid in sea water (7.11 - 13) s, 
same for solid CaCO 3, respectively s, 
MgCO 3 (10.49,50) t, 
solubility product for calcium u) carbonate in sea water (10.2) v 
same for CaC03 in a solid solution Wi" 
of  calcium-magnesium carbonate (10. 51) 
same for MgCO 3 in a solid sol- x, 
ution of  calcium~magnesium z, 
carbonate (10.52) 
isotopic label in reservoir i (1.18) oqj, 
subscript for oceanic surface 
( "mixed" )  layer (7.1) 0~',  
abundance of  carbon-total in an 
unspecified reservoir (4.1) 
abundance of carbon-total in 
reservoir i (1.1) 
same for 13C or 14C (1.1) 
column vector of  n i and *n i (9.12) 
column vector of  n/o and *n/o (9.17) C~eq" 
departure of  Ni from its initial 
value N~ (1.9) B, 
same for *N i (1.14) 
value of  ni at time t = 0 assuming 
an exponential rate of  increase in 
ni, (not a steady state value) (2.19) 

same for laC or 14C (2.30) 
subscript for preindustrial 
steady state (1.7) 
partial pressure of  CO2 (7.13) 
partial pressure of  CO2 in reservoir 
i (7.3) 
same for 13C or 14C (7.26) 
subscript for particulate organic 
carbon (10.33) 
cumulative production of  indus- 
trial CO2 in units of  carbon-total (1.8) 
concentration of  carbon-total at 
depth z in the oceans at time t (8.51) 
13C/C or 14C/C ratio of  an un- 
specified chemical (11.27) 
13C/C or 14C/C ratio of  carbon in 
reservoir i (1.1) 
13C/C or 14C/C ratio of  industrial 
CO 2 (zero for 14C) (1.12) 
standard 13C/C or 14C/C ratio (1.24) 
average 13C/C or 14C/C ratio of  
the sum of  all external sources of  
carbon-total to reservoir i (6.18) 
fraction of  industrial CO 2 residing 
in reservoir i (1.8) 
column vector of  r i and *riRio/Rao (9.24) 
rate of  change in abundance of 
rare isotopic carbon in reservoir i 
relative to rate of  industrial CO 2 
input multiplied by preindustrial 
isotopic ratio of  reservoir i (1.14) 
chemical (11.27) 

standard 13C/12C or 14C/12C ratio (11.33) 
theoretical Suess Effect of  reser- 
voir i (1.7) 
observed Suess Effect of  reservoir i 
at time t i (1.6) 
Laplace transform frequency (2.9) 
subscript for ocean as a whole (8.49) 
time (2.4) 
subscripts for subsurface oceanic 
reservoirs (8.4) 
volume of  oceanic reservoir i (8.3) 
mole fraction of  MgCO 3 in magne- 
sium carbonate (10.48) 
vertical coordinate in the oceans (8.49) 
isotopic fractionation factor for 
transfer of  carbon from reservoir 
(or phase) i t o j  (6.08) 
isotopic fractionation factor for 
transfer of  CO2 gas from reservoir 
i t o j  (applies only to air-sea ex- 
change, expressed in terms of  
partial pressures Pi and their rare 
isotopic equivalents) (7.29) 
equilibrium isotopic fractionation 
factor for surface ocean carbon- 
total relative to atmosphere CO 2 (11.73) 
perturbation factor relating a 
change in emerging flux to a 
change in carbon abundance for an 
unspecified reservoir (4.4) 
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13g, 

3~ 

i', 

m, 

no,  

3el, 3cij, 

3~ 

3~ 

~Uk, ~Uk' 

"y, 

7~ 
7_0 
3'i 

"7i, 
.r f ,  

370, 

*I'o, 

A, 

6C, 

136C, 
146C, 
(6C) O, 

factor for perturbation of  the 
oceanic gravitational flux (8.19) 
perturbation factor for the depen- 
dence of  the rate of  transfer of  
carbon out of  reservoir i on the 
change in abundance of  carbon- 
total in reservoir i (3.1) 
same except related to a change in 
abundance of  carbon-total in the 
reservoir to which carbon is being 
transfered (4.9) 
factor for perturbation in flux 
from surface to deep ocean asso- 
ciated with the oceanic gravita- 
tional flux (8.22) 
value of  3m if gravitational flux is 
constant (3g = 0). (Factor is equal 
to ratio of  concentration of  
carbon-total in surface ocean to 
that in deep ocean.) (8.24) 
carbonate perturbation factors for 
oceanic reservoir i corresponding 
to ~i and 36 (10.16) 
same for particulate organic 
carbon (10.34) 
terms in the Taylor 's  expansion of  
/~g (j -- 0, 1, 2 . . . .  ) (8.20) 
terms in the Taylor 's  expansion of  
3i where the perturbation depends 
on the abundance of  the donor 
reservoir i only (j = 0, 1,2 . . . .  ) (4.8) 
terms in the Taylors expansion of  
3i, respectively 3j' ,  where the per- 
turbation depends on the abun- 
dances of  both the donor  reser- 
voir and the receiver reservoir. 
(The first term is designated 3io, 
respectively 3io'. For the higher 
t e rms j  and k take  on values 1, 2, 3, 
...) (4.14) 
subscript to R, an external source 
for the specified reservoir (e.g. R~a 
denotes isotopic ratio of  industrial 
CO2 entering the atmosphere) (6.18) 
column vector of  ")'i and *'Yi/Rao (9.12) 
column vector of  ~io and *'Yio/Rao (9.18) 
combined external sources of  
carbon-total to reservoir i (5.2) 
same for 13C or 14C (9.5) 
rate of  production of  industrial 
CO2 in units of  carbon-total (2.4) 
value of  3,fat time t = 0, assuming 
an exponential rate of  increase in 
")'f (2.16) 
steady state (or average) rate of  
production of  rare isotopic carbon 
by cosmic rays (zero for 13C) (2.26) 
change from preindustrial value for 
quantity preceded by A (1.27) 
relative variation inl3C/C or 14C/ 
C ratio from a standard value (1.25) 
same specifically for 13C (1.23) 
same specifically for 14C (1.24) 
same for reservoir i at time tj (1.26) 

6"C, relative variation in *C/12C ratio 
from standard where *C denotes 
13C or 14C 

613Ci, (613Cio) same for 13C in reservoir i 
efi, relative variation in 13C/C or 14C/ 

C ratio of industrial CO2 from that 
of  preindustrial carbon in reservoir 
i (2.2) 

g'i, carbonate perturbation factor for 
reservoir i (10.11) 

~ij, terms in the Taylor 's  expansion of  
~'i(J = 0, 1,2 . . . .  ) (10.10) 

~i, rate of  dissolution of  solid calcium 
carbonate in (oceanic) reservoir i in 
same units as ~f (10.4) 

Og, relative fraction of  the change in 
gravitational flux of  carbon-total 
in the oceans associated with parti- 
culate organic carbon (the remain- 
der being associated with biogenic 
carbonate) (10.27) 

0 i, relative fraction of  change in abun- 
dance of  carbon-total in reservoir i 
owing to external sources (the (10.25, 
remainder being due to carbonate 
dissolution) (10.26) 

~, CO2 evasion factor for carbon- 
total (7.1) 

*~, same for rare isotopic carbon (7.28) 
~i, terms in the Taylor 's  expansion of  

(i = 0, l, 2) (7.2) 
Xij, gas transfer coefficient for transfer 

of  CO2 gas from reservoir i t o j  
(Applies only to air-sea exchange 
expressed in terms of  partial press- 
ures, Pi and Pj) (7.3) 

*Ao, special function of  *), (6.24) 
* ) ~ ,  radioactive decay constant for rare 

isotopic carbon (zero for 13C) (2.26) 
/~, reciprocal of  e-fold time for expo- 

nentially rising industrial CO2 
production (2.16) 

EC, total concentration of  inorganic 
carbon-total dissolved in sea water (7.14) 

~ b i ,  perturbation function for transfer 
of  carbon from reservoir i to 
another reservoir when the pertur- 
bation depends only on the abun- 
dance of  carbon-total in the donor  
reservoir (3.10) 

dPij, same except that the perturbation 
depends on abundances in both 
donor reservoir i and receiving 
reservoir j ,  (6.15) 

Cm, perturbation function for CO 2 
evasion from surface ocean, defined 
as a function of  thermodynamic 
quotients, K 1 and K2, and the 
hydrogen ion concentration, [H + ] (7.17) 

*4~m, same for rare isotopic carbon (7.27) 

The following special symbols are used: 

(11.34) 
(11.39) 

left superscript, indicates that the 



232 Charles D. Keeling 

13, 14, 

9 

[ ] ,  

[ ] ,  

OO, 

main symbol refers to a rare iso- 
tope of  carbon, either 13C or 14C (1. l) 
left superscript, indicates that 
main symbol refers to 13C, respec- 
tively t4C (1.2,1.3) 
over main symbol, Laplace trans- 
form defined by equation (2.10) (2.9) 
over main symbol, average over 
coordinate specified in parentheses 
after main symbol (8.50) 
enclosing an algebraic symbol, a 
column vector (symbols used are 
n"i, *hi, g/i, *~i,tliO, *niO, "YiO, *'Y/O, ri, *ri) 
or square matrix (symbols used are 
kiy, *kij, kij') (9.6) 
([ ]o) enclosing a chemical symbol, 
such as H + or HCO3- )  the 
concentration of  the specified 
chemical species in sea water (7.11) 
operator for partial differentiation (8.51) 
operator for integration (2.17) 
infinity as a limit of  integration ( 2 . 1 7 )  
Bold type for main symbol, indi- 
cates that the main symbol is a col- 
umn vector or a square matrix (9.12) 

Introduction 

Atmospheric carbon dioxide (CO2) contains two rare 
carbon isotopes having atomic masses of  13 and 14. 
Their abundances relative to the dominant isotope of  
mass 12 have declined in recent years owing to dilution 
with CO2 depleted in both rare isotopes. A clearly docu- 
mented component of  this dilution is industrial CO2 
added to the air as a by-product of  the combustion of  
fossil fuels. This CO2 on average contains approxi- 
mately 2% less 13C per mole than atmospheric CO2 and 
is virtually free of  14C. 

A second less well defined component of  the recent 
dilution of  atmospheric CO2 stems from the large scale 
harvesting of  timber and the clearing of  forests and 
grasslands for agriculture. These activities have 
removed carbon not only from the terrestrial biota, i.e. 
the living organic material on land, but also from soils. 
The total amount  of  carbon removed, most of  which is 
released to the air as CO2, is believed by some investi- 
gators to approach in magnitude the CO2 produced 
from fossil fuels. 

The rate of  production of  industrial CO2 during most 
of  the industrial era is known to fair accuracy from 
historical data on fossil fuels. In addition, since A.D. 
1956, direct measurements of  atmospheric CO2 esta- 
blish that the concentration of  CO2 in air is rising at 
close to 50°70 of  the rate of  production. 

This implies that somewhere there exists a sink for 
atmospheric CO2 which is accepting the remaining 
industrial CO2 and whatever additional CO2 is being 
released from the terrestrial biota and soils. The oceans 
account, beyond doubt,  for part of  the uptake, but it is 

far from certain that they have taken up all of  the indus- 
trial CO 2 not remaining airborne. There is presently no 
direct evidence at all that they have taken up additional 
CO2 from the land biota and soils. Indeed, studies of  
chemical tracers suggest that the oceans are so limited in 
their ability to absorb atmospheric components that the 
land biota must be responding to increasing atmos- 
pheric CO2 and therefore with respect to the air is acting 
more as a sink than as a source of  CO2. This view is, 
however, not in good agreement with the expected 
behavior of  terrestrial plants whose growth is generally 
limited by other environmental factors (Goudriaan, 79). 

It is clear that either the oceans or the land biosphere 
are in truth accepting more CO2 than is currently be- 
lieved possible. Unfortunately,  existing direct measure- 
ments of  carbon abundances are not accurate enough to 
detect possible changes which have occurred either in 
the ocean or in the biota and soils, and therefore the 
question as to which reservoir is being improperly as- 
sessed is not readily resolved. 

Isotopic studies have been proposed as an indirect 
means of  establishing where the "missing" CO2 has 
gone, but whether 13C and 14C are actually useful 
tracers of  the redistribution of  industrial and biospheric 
CO2 is not obvious either by examining existing isotopic 
data or from a consideration of  published theoretical 
models of  the carbon cycle. 

It is the purpose of  this article to make clearer than 
hitherto the advantages and shortcomings of  these rare 
isotopes as tracers of industrial CO 2. The approach will 
be to predict, by means of  generalized geochemical 
models, the expected shifts in isotopic ratio as CO2 
from fossil fuel, or from plant communities disturbed 
by man, is redistributed throughout  the carbon cycle. 

Carbon-13 is stable. Its depletion in industrial CO2 is 
solely a result of  isotopic fractionation. Most of  this 
fractionation occurred long ago when the carbon was 
first removed from the atmosphere and incorporated by 
photosynthesis in marine and terrestrial plants, precur- 
sors of  present day coal, petroleum, and natural gas. 
Subsequent diagenetic transformations to produce these 
fuels reduced the laC abundance still further, especially 
in the case of  natural gas. Very little further fractio- 
nation occurs during fuel consumption, since the carbon 
of  fossil fuels is almost completely converted to CO2 by 
combustion (Keeling, 73a). 

Carbon-14 is radioactive with a decay constant of  
about 1/8000 yr -1 (Olsson, 70). Long storage of  fossil 
fuels in underground reservoir has caused the 14C origi- 
nally present to disintegrate radioactively to form 14N, 
so that the carbon in these fuels contain only the stable 
isotopes. 

Within all of  the natural carbon reservoirs which ex- 
change carbon with the atmosphere, the injection of  
industrial CO2 into the air has reduced 13C and 14C 
ratios relative to the abundance isotope 12C, and to the 
sum of  isotopes which I will call carbon-total (C). Espe- 
cially affected are the 13C to carbon-total 03C/C)  and 
14C to carbon-total 04C/C)  ratios of  the pools in closest 
contact with the atmosphere: the inorganic carbon pool 
of  the oceans and the organic carbon pool of  the terres- 
trial biota and soils, which I will collectively call the 
land biosphere. 
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One might expect that the usefulness of  13C and 14C 
as tracers would be enhanced when both are measured. 
This is because the processes by which 13C/C ratios have 
changed in response to industrial CO2 production are 
known to be distinctly different from those which have 
changed 14C/C ratios. With respect to 14C, its total 
absence in fossil fuel is the major  cause of  depletion in 
the atmosphere and other carbon pools. The size of  
these carbon pools and the rates at which they exchange 
carbon-total are, therefore, the dominant factors which 
affect 14C/C variations. Of the pools that readily 
exchange carbon with the atmosphere, the oceanic is the 
largest. It follows that the magnitude of  the shift in 
14C/C ratio in all pools depends, in the main, on the 
rate of  oceanic uptake and release of  carbon and on the 
extent to which the large oceanic carbon pool in deep 
ocean water mixes with the lesser pool in surface water. 
Conversely, 14C/C ratios in all pools are insensitive to 
properties of  the land biosphere. 

With respect to 13C, isotopic fractionation during the 
redistribution of  fossil fuel carbon from the air to other 
carbon pools is similar in magnitude to the original frac- 
tionation during formation of  fossil fuel. Indeed, be- 
cause fossil fuel was once plant carbon, industrial CO 2 
has nearly the same average 13C/C ratio as the carbon 
of  living land plants. The 13C/C shift caused by bio- 
spheric transfer to the atmosphere therefore has nearly 
the same isotopic impact as a corresponding injection of  
industrial CO2. Although the size of  the biospheric pool 
is relatively unimportant for 13C for the same reason 
that it was unimportant for 14C (namely that it is over- 
shadowed by the oceanic pool), nevertheless, in contrast 
to 14C, 13C/C ratios are strongly influenced by changes 
in the size of  the biospheric pool. This sensitivity to 
changing pool size is irrespective of  whether the changes 
are natural or caused by human activities. 

Such different isotopic tendencies guarantee that the 
simultaneous use of  13C and 14C will tell us more about 
the global response of  the carbon cycle to industrial 
CO2 than either isotope alone. The advantage of  two 
rare isotopes is lessened, however, because 13C and 14C 
ratios have only been measured for a few decades and 
because man-made, " b o m b " ,  14C from nuclear 
weapons testing obliterated the industrial 14C effect 
after 1954. 

Global average ratios for earlier times must be 
inferred from historic materials such as tree rings, 
vintage whiskies, coral rings and varved sediments. The 
overriding of  global trends by local effects, a problem 
which probably can be overcome for 14C (Cain, 76), is 
more likely to confound 13C measurements, since the 
abundance of  this isotope in natural materials is signifi- 
cantly effected by almost any extraneous isotopic 
fractionation process which occurs in the local environ- 
ment of  the plant. Thus 14C is not ideal but the pre- 
ferred isotope for studying past industrial activity. 
Nevertheless, 13C is the only choice for recent times. 

An isotopic effect attributed to industrial CO2, was, 
in fact, first observed with respect to historical vari- 
ations in 14C/C ratios. In A.D. 1953, Dr. Hans Suess, 
working for the U.S. Geological Survey, following a 
suggestion of  G.E. Hutchinson (Hutchinson, 54; p. 590), 
investigated variations in the 14C content of  wood of  

known age. Suess detected a 3.4°/0 decrease in 14C ratio 
of  wood carbon during the preceding 50 yr for two trees 
from the eastern United States (Suess, 53). A tree from 
Alaska showed about half as much decrease. All ratios 
were corrected for radioactive decay back to the time of  
growth of  the wood. Two years later Suess proposed 
that the decrease, and similar decreases which he found 
for several additional trees, were due to industrial coal 
production causing a decrease in the 14C/C of  atmos- 
pheric CO2 which in turn caused proportional decrease 
in the carbon incorporated tree rings (Suess, 55). The 
isotopic decreases in trees of  the eastern United States 
could be due to local industrial effects, but decreases in 
trees of  remote areas such as Alaska suggested a global 
effect. After discounting local effects for each tree, he 
estimated the global effect to be 1 07o or less. 

In A.D. 1957 Suess revised his opinion on the strength 
of  the effect. In collaboration with Dr. Roger Revelle of  
the Scripps Institution of  Oceanography he compared 
his tree ring data with 14C/C ratios in ocean water as a 
basis for determining how much industrial CO 2 had 
been absorbed by the oceans during the period of  14C 
observation (Revelle, 57b). From the oceanic data he and 
Revelle predicted a global reduction in the 14C of  atmos- 
pheric CO2 of  about 1.7°70. This value was not incon- 
sistent with the tree ring data, and appears to be more 
reasonable than his previous estimate of  about 1070. A 
1.7°70 decrease was, however, still far less than the 10070 
decrease to be expected if all of  the industrial CO2 had 
remained in the atmosphere in isolation from other 
carbon reservoirs. After considering the mechanism of  
CO2 exchange between the atmosphere and the oceans, 
including the influence of  carbonate ion in sea water, 
Revelle and Suess concluded that a considerable part of  
the CO2 from combustion was exchanging with the 
carbon of  sea water with between 40 and 70070 being 
retained in the oceans. They declined to estimate the 
possible atmospheric increase because they lacked infor- 
mation on biospheric changes. 

Their conclusions regarding oceanic uptake of  CO2 
were in contrast to the opinion of  Callendar (38) that 
neither the oceans nor the biosphere had strongly modi- 
fied the direct effect of  industrial CO2 on the atmos- 
phere. Callendar's conclusion, generally accepted at 
that time, soon appeared to be reinforced by new atmos- 
pheric CO2 measurements over Scandinavia carried out 
in connection with the International Geophysical Year. 
These data indicated an increase in CO2 nearly equal to 
the industrial CO2 input (Fonselius, 56; Callendar, 58). 
But in the next decade, additional new data from 
Hawaii and Antarctica established a considerably 
slower rate of  rise in atmospheric CO2 and revived an 
interest in the role of  the oceans in removing substantial 
amounts of  industrial CO 2 from the atmosphere (Bolin, 
63; Pales, 65; Brown, 65). Suess and Revelle had, in 
effect, anticipated this result and thus had demonstrated 
how indirect isotopic measurements could yield insight 
into processes governing the redistribution of  industrial 
C O  2. 

From Suess's 14C data it soon became evident that a 
correct interpretation of  14C/C ratios for archeological 
and geochemical dating required that the industrial CO 2 
effect be properly allowed for in calibrating ancient 
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samples  aga ins t  m o d e r n  mate r ia l s .  Suess ' s  d i scovery  
received wide scientif ic  a t t en t ion  and  was soon re fe r red  
to  as the  "Suess  E f f e c t " .  The  te rm a p p e a r e d  shor t ly  
a f te r  in the  scientif ic  l i t e ra ture  (Hayes ,  56; Bol in ,  59) 
and  has  been re fe r red  to  widely  since tha t  t ime.  

Extens ive  fur ther  m e a s u r e m e n t s  by  Suess and  his 
cowor ke r s ,  and  by  o the r s  who  have j o i n e d  in these 
s tudies  over  the  pas t  two decades ,  con f i rm  the existence 
o f  the  Suess Effec t .  The  d a t a  o b t a i n e d  f rom tree r ings,  
oceanic  mate r ia l s ,  and  direct  measu remen t s  are  
s u m m a r i z e d  in Tab le  1. They  indica te  tha t  the  decrease  
in 14C/C f rom the midd le  o f  the  n ine teenth  cen tury  to  
the  ear ly  1950s is c lose to  the  1.7°70 es t imate  o f  Suess 
and  Revelle.  The  da t a ,  in aggrega te ,  however ,  are  not  
cons is ten t  enough  to es tabl ish  an  accura te  g loba l  value.  
Loca l  effects ,  such as local  c o m b u s t i o n  o f  fossil  fuels,  
have  evident ly  in f luenced  m a n y  o f  the r epo r t ed  
measu remen t s .  A l t h o u g h  Suess f rom the beginning  o f  
his s tudies  was aware  o f  the  poss ib i l i ty  o f  local  effects ,  
inves t iga tors  r eg re t ab ly  have  usua l ly  not  furn ished  
enough  d o c u m e n t a t i o n  to  assess the  m a g n i t u d e  o f  local  
in ter ferences .  

Table 1. The observed Suess Effect for 13C and 14C 

Date of 
most re- 

Reported cent ma- Corrected 
value terial Hemi- for 

Investigator (%Q) measured sphere 13C? 

Atmospheric 14C Suess Effect inferred from tree rings 

Suess -3.4 1953 N No 
(1953, p. 55) 
Suess [ - 1.6 1953 N Yes 
(1955, p. 416) I -3.0 1953 N 

-1.6 
-0.4 

Hayes e t  al. 
(1956, p. 191) 
Brannon e t  al. 
(1957, p. 646) 

Fergusson 
(1958, p. 564) 

MOnnich and Vogel 
(1958, p. 6) 
de Vries 
(1958, p. 96) 
Broecker and Walton 
(1959b, p. 311) 
Suess 
(1965, p. 5941) 
Houtermans e t  al.  
(1967, p. 58) 
Lerman e t  al.  ~a) 
(1970, p. 287) 

Damon e t  al.(b) 
(1973, p. 303) 

1953 N 
1953 S 

-4.0 1955 N No 

-3.6 1955 N No 
-3.3 1955 N 
-2.8 1955 N 
-1.7 1955 N 
-2.01 1953 N Yes 
-1.88 1953 S 

} -1.98 1953 S 
[ -2.34 1953 S 

-4.0 1953 N. Yes 
-2.8 1953 S 
-1.5 1935 N Yes 

-3.2 1938 N Yes 

-2.4 1942 N Yes 

-2.3 1948 N Yes 

-2.34 1951 N Yes 
-1.83 1950 N 
-1.86 1952 N 
-2.03 1952 N 
-1.43 1951 N 
-2.20 1951 S 
-1.91 1952 S 

i 
-2.62 1947 N Yes 
-3.35 1948 N 
-3.91 1949 N 
-3.15 1950 N 
-2.55 1951 N 
-3.05 1952 N 
-3.05 1953 N 

Cain and Suess -2.0 1940 N Yes 
(1976, p. 3690) 
TanstO ~-1.70 1945 N Yes 
(1978, p. 86) I-2.40 1950 N 
Surface oceanic 14C Suess Effect inferred from biogenic carbonates 

Brannon e t  al.  J-2.1 ca. 1950- N No 
(1957, p. 647) |-3.2 1938 N 
Broecker td} ,~ -1.0 1957 N and S Yes 
(1963, p. 140) 
Nozaki e t  aLtO -2.2 1950 N Yes 
(1978, p. 826) 
Druffel and Linick - 1.1 1952 N Yes 
(1978, p. 915) 
Atmospheric shift in ~513C 
Keeling e t  al. N 
(1979, p. 122) 
Surface oceanic shift in 613C 
Nozaki e t  a l J  e) -0.24 1956-1978 N 
(1978, p. 826) -0.26 1850-1956 

Notes 
(a) Preindustrial 14C/C ratio estimated from 3 samples, A.D. 1858- 

t866, with AI4C of -0.04°70. 
(b) Preindustrial 14C/C based on 0.950 of NBS oxalic acid standard. 

Additional data for A.D. 1940-1946 not shown. 
(c) Preindustrial 14C/C estimated from six samples, A.D. 1862-1872, 

with A14C of -0.41 °70. 
(d) Upper limit deduced from data which range from -0.5 to +0.807o. 

(See Table 2, p. 140 of original article). 
(e) Estimated by reading from a graph. 

A no tab l e  except ion ,  however ,  is the s tudy o f  Wi l l i am 
Cain ,  a s tudent  o f  Suess, who de l ibe ra te ly  inves t iga ted  
the  re la t ive  i m p o r t a n c e  o f  local  and  g loba l  effects  o f  
indus t r ia l  C O  2 on  14C o f  t ree r ings (Cain,  76). Cain  
a d o p t e d  the pa ins t ak ing  a p p r o a c h  o f  measur ing  all 
poss ib le  ind iv idua l  r ings (except  pe rhaps  the earl iest  
which are local ly  a f fec ted  by  the low height  o f  the tree) 
to ob ta in  a comple t e  t ime series for  each tree.  By care- 
ful ly checking  several  series o f  r ings for  in ternal  consist-  
ency,  Cain  d iscerned subt le  in ter ferences  which,  if  he 
had  not  detected them,  would  have  inva l ida ted  the use 
o f  these records  to detect  g loba l  changes  in 14C/C. Mos t  
n o t a b l y  he found  tha t  " b o m b "  14C had  inf luenced the 
14C/C or  rings laid down  as ear ly  as 1915 by its incorpo-  
ra t ion  at the  t ime o f  convers ion  f rom s a p w o o d  to hear t -  
wood .  Cain d id  not  a t t empt  to  es tabl ish  the  g lobal  Suess 
Effec t  accura te ly ,  but  he d e m o n s t r a t e d  c lear ly  tha t  to 
do  so will involve a large e f for t :  comple t e  series f rom a 
cons ide rab le  number  o f  trees a re  needed  to  be cer ta in  
tha t  local  effects have been a l lowed  for .  

Very recent ly  new da t a  have been ob t a ined  by  Stuiver  
and  Q u a y  (79) which suggest  tha t  sampl ing  and  experi-  
menta l  p rob l ems  which have  be fo re  h a m p e r e d  estab-  
l ishing o f  the  g loba l  Suess Effect  can be subs tan t ia l ly  re- 
duced  by adher ing  to very carefu l  p rocedures .  S tu iver ' s  
d a t a  ind ica te  tha t  the  14C/C ra t io  o f  a tmosphe r i c  CO2 
from 1850 to 1952 decreased by -2.4O7o (Stuiver, pr ivate  
c o m m u n i c a t i o n ) .  But so far Stuiver  has descr ibed  
me a su re me n t s  o f  only  one  or  two trees for  any  given 
t ime per iod .  More  trees f rom a var ie ty  o f  sites will be 
needed  to es tabl ish  tha t  tree r ing d a t a  unequivoca l ly  re- 
flect the a tmosphe r i c  Suess Effect .  

Ca rbon -14  is p r o d u c e d  in the  a t m o s p h e r e  by the 
in te rac t ion  o f  cosmic  rays  with n i t rogen  gas (Lingenfe l -  
ter ,  63; Light ,  73). Uns tead iness  in the  ra te  o f  this  
p r o d u c t i o n  presents  ano the r  p r o b l e m  in es tabl ish ing the 
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industrial CO2 influence on 14C ratios. Variations in 
ratio of  the order of  2°70 per century have been found in 
tree ring records as far back as ring counting extends: 
some 7000 years (Suess, 65, 70; Damon, 70; Eddy, 77; 
Damon, 78; Stuiver, 79). As suggested by Stuiver (65), 
these variations are likely to be due to variations in solar 
activity which in turn affects 14C production. To test for 
this possibility an index of  solar activity is needed, such 
as sunspot numbers. Suess and coworkers, however, 
found about 10 years ago that the direct statistical corre- 
lation of  this existing 14C/C data with sunspots was too 
poor to be a good predictor (Houtermans,  67). 

Closely spaced and highly accurate tree rings analyses 
and more reliable sunspot data obtained recently by 
Stuiver and Quay (79) yield a better correlation between 
14C/C ratios and sunspots. If a causal connection exists, 
as seems likely from these new data, the correlation 
should be improved by giving careful attention to 
known aspects of  the carbon cycle which may modify 
the correlation in predictable ways. This approach has 
not yet been very successful, however. Grey (69) and 
Grey and Damon (70) employed a one reservoir model 
which was clearly too simplistic, while Bacastow and 
Keeling (73), although they used an elaborate six-reser- 
voir model, inadequately represented the 14C pro- 
duction variation with sunspots and obtained almost no 
correlation at all. 

It seems likely that the 14C Suess Effect will continue 
to receive attention as new studies improve the data 
base. Recent suggestions that CO2 from the land bio- 
sphere may actually exceed fossil fuel as a source of  
CO2 to the atmosphere (Woodwell, 78; Stuiver, 78; 
Wilson, 78) also have stimulated new interest in the 
Suess Effect,  because, if the Suess Effect were accu- 
rately known, it would establish within fairly narrow 
limits the capacity of  the oceans to absorb industrial 
CO2, and hence, by difference, the change in biospheric 
carbon. 

Possible variations in 13C related to industrial CO2, 
have until recently not received the widespread interest 
accorded 14C. In the past few years however a consider- 
able body of  data on tree rings has appeared (Freyer,  
73, 74, 78a, 78b; Pearman, 76; Fraser, 78; Tans, 78; 
Wagener, 78; Wilson, 78), and one study of  coral 
(Nozaki, 78). Also the isotopic shift in the atmosphere 
between A.D. 1956 and 1978 has very recently been 
reported from direct measurements (Keeling, 79a). 

The tree ring data scatter badly, and for recent years 
do not agree very closely with the direct atmosphere 
observations. Until the causes of  the scatter are better 
understood, it is difficult to decide whether these data 
will be of  value to global studies. 

The coral 13C data show a more consistent trend, but 
it may be premature to generalize from a single 
example. The atmospheric 13C data present the fewest 
complications, but are only available for two short 
periods, 22 yr apart, The coral and atmospheric data 
(Table 1) do suggest, however, that the 13C/C ratios in 
atmospheric CO2 and surface ocean water, at least 
qualitatively, have both shifted in the past 100 years as 
expected if industrial CO2 or land biospheric CO2 had 
entered the atmosphere. 

Since nuclear weapons testing does not generate 13C, 

the industrial 13CO2 effect ought to be traceable for the 
entire industrial era and in the future. The advantage of  
possible future studies is considerable since the rate of  
industrial CO 2 production in A.D. 2000 is likely to be 
over twice that of  A.D. 1978 and 6 times larger that in 
A.D. 1954 when the 14C record was blocked out by 
weapons testing. Thus we may expect to see continued 
interest in 13C measurements even if present data do not 
show unmistakable promise of  success. 

So far 13C/C data have not received the detailed 
theoretical interpretation accorded 14C data, but Stuiver 
(78), Oeschger and Siegenthaler (78) and Siegenthaler et 
ai. (78) have presented evidence, based on models, that 
the shift in the tree ring data is considerably too large 
and begins too early to be owing solely to industrial CO 2 
from the land biosphere from A.D. 1850 to 1950 com- 
parable in magnitude to that of  industrial CO2. 

Although a biospheric release of  carbon seems to 
follow unmistakeably from the data, the geochemical 
calculations of  Stuiver and Oeschger have not been 
presented in sufficient detail to assess directly the quan- 
titative validity of  their computations. Stuiver (78) 
indeed, avoided the direct use of  a model for 13C 
altogether by assuming that the decrease in IaC/C 
owing to industrial CO2 was proportional to the corre- 
sponding decrease in 14C/C. Specifically he argued that 
since industrial CO2 from A.D. 1850 to 1959 contained 
18~Toeless 13C than atmospheric CO2, but 100070 less 14C, 
that therefore the shift in 13C owing to industrial CO 2 
should be 0.018 times the 14C shift. To overcome the 
possible interference of  variations in solar activity with 
the latter, he accepted a model prediction of  the 14C 
Suess Effect of  Oeschger et al. (75). As shown below, 
his approximation, although correct as to order of  mag- 
nitude, is substantially in error because it neglects iso- 
topic fractionation associated with 13C exchange 
between reservoirs. 

To establish a correct prediction requires a detailed 
consideration of  such fractionation. It is my purpose 
here to carry out this analysis giving equal consider- 
ation to both 13C and 14C. First I will precisely define 
the Suess Effect for 14C, and its extension to 13C. I will 
indicate how the effect relates to the fractions of  indus- 
trial CO2 which appear in the various reservoirs of  the 
natural carbon system. T h e r e l a t e d  fractions for 13C 
and 14C will also be considered. Next, I will show with a 
two reservoir geochemical model that the Stuiver 
approximation would prevail if isotopic fractionation 
and radioactive decay, as they affect the redistribution 
of  industrial CO2, were negligible compared to the frac- 
tionation involved in the natural formation of  fossil 
fuel. Then, for several pairs of  reservoirs representing 
important segments of  the natural carbon cycle, I will 
establish expressions for calculating the Suess Effect 
without neglecting fractionation and radioactive decay. 
The formulism of  these two reservoir models will after- 
wards be employed to construct a four reservoir model 
involving simultaneously the land biosphere and a two 
layer ocean. Finally I will compare the experimental 
results for 13C and 14C with the predictions of  this 
model for the important case of  an exponentially 
growing industrial CO2 source. To allow comparison 
with the vertical diffusive model of  the oceans of  Oesch- 
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ger et al. (75) the two layer ocean model will be so pres- 
cribed that it is equivalent to this diffusive model. 

The emphasis of  this article will be on formulating 
models rather than surveying or interpreting large 
amounts of  observation data. Although the models to 
be described have simple geochemical properties, their 
formulation with isotopic fractionation included will be 
as complete as possible for possible application to more 
complicated (and presumably more realistic) models 
which may later on be derived when the observation 
data become more reliable. 

Nevertheless, the usefulness of  13C and 14C as tracers 
o f  industrial CO2 will be reflected upon towards the end 
of  the article. Indeed, for those readers who are not 
interested in the mathematical details, the article has 
been arranged so that sections 1 - 3 and subsection 11.1 
form a sufficient background to allow readers to pass 
over the mathematical development (sections 4 - 10 and 
subsections 11.2 - 11.5) and still be able to comprehend 
the final section on interpretation. 

1. Definition of the Suess Effect 

1.1 General comments 

The Suess Effect has generally been understood to 
denote the decrease in 14C/C ratio in atmospheric CO2 
caused by the combustion of  fossil fuel (Baxter, 70, 
p. 213). In no published study, however, has the Suess 
Effect been defined in precise mathematical terms. 

For purposes of  the present discussion, a broad defi- 
nition is desirable. Therefore I will define the 14C Suess 
Effect as the change in carbon-14 relative to carbon- 
total in any part o f  the carbon cycle caused by admix- 
ture o f  industrial CO2. Also, I will introduce a corre- 
sponding 13C Suess Effect defined as the decrease in 13C 
brought about by industrial CO2. The simple term 
"Suess Ef fec t"  will be used when the distinction 
between isotopes is not important.  Industrial CO 2 shall 
mean all of  the CO2 produced by man commercially in- 
cluding the manufacture of  cement (Baxter, 70; Keeling, 
73a) but not CO2 from the combustion of  wood or agri- 
cultural products. Carbon-total  (symbol C), will refer to 
the sum of  all the carbon isotopes, but practically 
speaking, to the sum of  12C and laC, since the abun- 
dance of  14C is negligible in comparison. 

Isotopic data are conventionally expressed relative to 
experimental laboratory standards, and in the case of  
14C are usually corrected for variations in 13C 
(Broecker, 59a). I prefer not to make reference to these 
calibration procedures in the definition of  the Suess 
Effect,  although it is necessary to take them into 
account when comparing observational data with model 
predictions, as is done in section 12, below. 

Carbon-13 variations are usually reported relative to 
carbon-12 rather than to carbon-total,  because natural 
isotopic fractionation is directly expressed in terms of  
ratios o f  single isotopes. For natural carbon the rare iso- 
topes are in such low abundance, however, that the 
slight inconstancy of  fractionation factors, expressed 
relative to carbon-total,  may be neglected (Keeling, 

79b). Therefore,  for uniformity with the definition of  
the 14C Suess Effect, the 13C Suess Effect will be 
defined in terms of  13C/C rather than 13C/12C isotopes. 
The absolute abundance of  13C relative to 12C is well 
enough known to convert published data to 13C/C 
ratios without introducing appreciable errors (Mook, 
73). 

As just defined, the Suess Effect is essentially a theor- 
etical concept. Observed variations in 13C and 14C in 
nature must in truth reflect a multiplicity of  causes 
besides admixture of  industrial CO2. Indeed, as noted 
above, solar activity and other actions of  man such as 
changing agricultural practices may cause greater iso- 
topic variations than industrial CO2. A related obser- 
vable quantity to compare with the theoretical Suess 
Effect is thus useful. I will therefore define an "observ- 
able Suess Ef fec t"  as the change in IaC/C or 14C/C 
ratio of  atmospheric CO 2 (or the carbon in some other 
reservoir) owing to whatever causes were actually res- 
ponsible for the change. To make the latter definition 
precise, the isotopic change will be measured from a 
prescribed year prior to which industrial CO2 had only a 
small influence. Since industrial CO 2 production has 
been computed on a yearly basis only since A.D. 1860, 
that year might be a logical choice to mark the beginning 
of  the observable Suess Effect,  but earlier dates may be 
of  interest as well. For such cases, assumption of  an ex- 
ponentially rising production rate prior to A.D. 1860, 
establishes accurately enough the CO2 production 
before 1860 (Keeling, 73a, p. 192). For 14C the observ- 
able Suess Effect effectively ends in A.D. 1954, but for 
laC any recent or future ending date is appropriate. 

1.2 Mathematical expressions for  the Suess Effect 

To formulate the above definitions mathematically 
requires that several other quantities first be defined. 

The amount of  carbon-total in a designated carbon 
pool or " reservoir"  of  the carbon cycle I will denote by 
N i where i stands for a letter subscript denoting the 
reservoir. Following a widely used convention, " a "  will 
denote the atmosphere, " b " ,  the land biosphere, " m " ,  
the ocean surface "m ix ed "  layer, " d " ,  the ocean sub- 
surface " d e e p "  layer. This notation may obviously be 
extended to more reservoirs or to subdivisions of  reser- 
voirs. 

In so far as possible, equations will be written which 
apply to both of  the rare isotopes, 13C and 14C. A left 
superscript asterisk will be used to denote a rare isotopic 
quantity; e.g. *Na will denote the 13CO2 or 14CO2 con- 
tent of  the atmosphere. (I will neglect other carbon 
species such as CO and CH4, which exist in the atmos- 
phere in quantities too small to be important here.) 

Carbon isotopic ratios will in general be denoted by 
the symbol, R, subscripted to identify the carbon pool. 
Thus: 

R, = *NJN i (1.1) 

refers to either the 13C/C or 14C/C ratio in reservoir i. 
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When it is necessary to distinguish isotopes, the 
atomic weight will be specified. Thus the ratios: 

l a g  a = laNa/N " (1.2) 
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and effects which are difficult to separate in terms o f  
this single disturbance by man, the definition will be 
expanded to encompass changes in isotopic ratios 
related to biospheric perturbations stemming from 
human activities. 

14R o = 14Na/Na (1.3) 

will refer, respectively, to the 13C/C and 14C/C ratios of  
atmospheric CO2. 

An optional additional subscript will denote a specific 
time. In particular, " o "  will represent a preindustrial 
time in which the cumulative production of  industrial 
CO2 is as yet essentially zero. Since some industrial CO2 
was already present in A.D. 1860 or any other reason- 
able starting date for observations, this date will be 
called tl rather than to, and the observable Suess Effect 
at time t2 will be defined by: 

Sa2 = (Ra2 - Ral ) / ia l  (I .4) 

or specifically for 14C: 

14Sa2 = ( l a R . z  - 1 4 R . : ) / 1 4 R a :  (1.5) 

1.3 Re la t ion  o f  Suess  E f f e c t  to industr ial  CO2 
p r o d u c t i o n  

The theoretical Suess Effect is, perforce, a function 
of  the total amount  of  industrial CO2 production up to 
a given year. Since this latter quantity is not exactly 
known (e.g. Keeling (73a) estimates 13% uncertainty) 
the theoretical Suess Effect suffers numerical uncertain- 
ty quite apart from uncertainty related to an imperfect 
understanding of  the natural carbon cycle. For the 13C 
Suess Effect,  uncertainties in the 13C/C ratio of  indus- 
trial CO2 of  several per rail (see, e.g., Schwarz, 70) also 
influence the numerical evaluation. Moreover,  to relate 
the theoretical Suess Effect to observable isotopic ratios 
requires a comparison of  recent and preindustrial ratios. 
The latter are not clearly established, as discussed later 
on.  

Keeping these limitations in mind, we shall now 
formulate the Suess Effect as a function of  industrial 
CO2 production. Let Q, a function, of  time, denote the 
cumulative input of  industrial CO2 to the carbon cycle, 
and r i the fraction of  this industrial CO2 residing in 
reservoir i at the time Q is evaluated. Then: 

where t2 is any suitable time after tl. 
Similarly, for any reservoir i, at time tj, subsequent to 

tl: 

r i = (N~ - Nio)]Q (1.8) 

= ni /Q (1.9) 

S~i = (Ri j  - N i l ) / N i l  (1.6) 

where Ril  and Rij denote the observed, i.e. actual, iso- 
topic ratios for times tl and tj. 

Consistent with the definition of  the observable Suess 
Effect,  the theoretical Suess Effect will be defined for 
reservoir i by the expression: 

S i = (R i - R io) /Rio  (1.7) 

where Rio denotes the preindustrial isotopic ratio, and Si 
and R i are regarded as continuous functions of  time, 
determined by a geochemical model of  the carbon cycle. 
To be completely consistent in defining the theoretical 
Suess Effect, the only independent disturbance 
considered in calculating Si and R i should be industrial 
CO2. But because the interactions of  the land biosphere 
and the atmosphere present a complex web of  causes 

where Nio denotes the preindustrial amount  o f  CO2 in 
reservoir i and n, the departure o f  N, from this initial 
value. For example the airborne fraction: 

r a = na/Q (1.10) 

according to data for the period 1956 to 1978, has a 
value of  approximately 54% (Keeling, 79a). 

To relate the theoretical Suess Effect to Q, it is useful 
to define corresponding reservoir fractions for 13C and 
14C. We encounter a problem for 14C, however. Indus- 
trial CO2 contains essentially no 14C, and thus a reser- 
voir fraction for industrial 14CO2 canno t  be defined. 

It might appear at first glance that the amount of  14C 
in each reservoir would be unaffected by the input of  
other isotopes of  carbon. But this would require not 
only that the isotopes exhibit identical chemical 
behavior, but that they also not interact mutually with 
other chemical species affected by industrial CO2. This 
possibility is of  some interest as a limiting case, and is 
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treated in section 2 below. In general, however, we 
expect that adding 12CO2 and 13CO2 to some part of  the 
carbon cycle results in a redistribution of  14C within 
other interacting reservoirs, even though the total 
amount  of  14C is not changed by the perturbation. Since 
this redistribution is a function of  the industrial CO2 
input, Q, it is useful to define dimensionless factors, 14r i 
which are, in so far as possible, analogous to the 
carbon-total  fractions, r i. 

Let us define these fractions by the expression: 

1 
14r .  = 4h i  

' 1 4 R i o Q  
(1.11) 

below, in terms of  an isotopic " l abe l "  variable related 
to the isotopic perturbation R i - -  Rio .  Since an other- 
wise linear model for carbon-total and rare isotopic 
carbon becomes non-linear if isotopic ratios are treated 
as system variables, it is advantageous to define an iso- 
topic label as a linear combination of  the perturbations 
*n i and hi. Since by definition (equation 1.1): 

*N. + *iV. co *hi co 

R i - R io  - - - -  (1.16) 
Nio + n i Nio 

it follows tha t :  

The choice of  14Rio in the denominator  is arbitrary, but 
turns out to be convenient in producing a simple 
expression relating the redistribution of  14C to the Suess 
Effect.  By equation (1.11) we, in effect, compare the 
actual change in 14C in each reservoir, 14n b to the 
change which would have occurred if all o f  the indus- 
trial CO2 had accumulated in that reservoir, and (con- 
trary to reality) had had the same 14C/C ratio as existed 
in the reservoir at the beginning of  the industrial era. 

A 13C airborne fraction could be defined in terms of  
the actual 13CO2 input: 

l a Q  = X a R t  Q (1.12) 

where 1 3 R f  denotes the 13C/C ratio of  industrial CO 2. 
However,- for consistency and later mathematical con- 
venience, I will adopt a definition analogous to equation 
(1.11) i.e.: 

13ni 
l a r i  - - -  (1.13) 

l a R ~ o  Q 

Thus, for either isotope: 

*H i 
*r - i 

R i o Q  
(1.14) 

where *n  i stands for * N - -  *Nio.  
For consistency in referring to the rare isotopic 

composition of  industrial CO2, the symbol R f  will be 
employed to denote either the 1 3 C / C  or 14C/C ratio 
with the understanding that in all cases 

14Rf = O. (1 .1  5) 

1.4  U s e  o f  a n  i s o t o p i c  l a b e l  

Although the main body of  this article proceeds from 
the definition already presented, it will prove convenient 
to carry out some model computations in section 3, 

R i - R io  = (*n  i - R i o n i ) / N  i . (1.17) 

The label variable for any reservoir i, I will thus define 
by the expression: 

e i = (*n  i - R i o n i ) / R a o  (1.18) 

which is equivalent to: 

(R  i - R i o ) N i  
/'i - (1.19) 

R ao 

This formulation gives us a quantity, which for small 
perturbations, is very nearly proportional to the isotopic 
ratio difference, R i - -  Rio ,  but has the dimensions of  
carbon-total.  I have normalized t i to the preindustrial 
isotopic ratio of  the carbon pool directly receiving the 
industrial CO2 source, i.e. to Rao.  This is an arbitrary, 
but convenient, choice. 

Eliminating the *n i and n i in equation (1.18) by means 
of  equations (1.9) and (1.14): 

f i = ( R i o / R a o ) (  *ri - ri)Q" (1.20) 

In terms of  label the theoretical Suess Effect (cf. 
equations (1.7) and (1.19)) is therefore: 

R a o f  i 
S i = 

R i o N i  
(1.21) 

whence, in accordance with equation (1.20): 

S i = ( Q / N i ) ( * r  i - r i ) .  (1.22) 

This last formulation is especially useful in computing 
the theoretical Suess Effect because, as discussed later, 
the industrial COa input is approximated by an expo- 



The Suess Effect 

nential function of  time. If the governing equations of  
carbon cycle model are linearized, which is appropriate 
for the small relative changes in N i and R i which have 
occurred up to the present, then the predicted values of  
*ri and ri are invariant and readily evaluated. 

1.5 Relat ing the Suess Ef fec t  to observational data 

A minor complication occurs in comparing model 
predictions with observations because the preindustrial 
quantities, Rio and Nio, are not identical to the corre- 
sponding quantities for A.D. 1860 nor to any other year 
which might be selected as the starting year of  the Suess 
Effect, tl. Indeed, the carbon-total abundances, Nio, 
cannot be obtained from any historical data, such as 
tree rings, but must be assigned values inferred from the 
industrial period. Different approximations of  the 
model equations, and of  the functional form given to 
the input Q, therefore may lead to different assigned 
values. These assignments do not markedly hinder a 
comparison of  theory and observation as parameters are 
varied for any given model, because of  more serious 
uncertainties arising from the data and model assump- 
tions. Choosing different initial values for different 
models makes comparison of  models more difficult, how- 
ever, because small differences in prediction may be of  
interest in deciding between models. Therefore it is 
worthwhile to pay close attention to the rational for 
assigning preindustrial values. 

A more serious complication arises because a steady 
state between pools of the carbon cycle probably did not 
exist at the time when significant use of  fossil fuel first 
began. Thus the perturbation of  carbon and its isotopes 
must be superimposed on a time variable record of  
abundances and isotopic ratios. As noted in section 3, 
the models which we employ to determine the theoreti- 
cal Suess Effect essentially do no more than predict 
those isotopic changes brought about by industrial CO2 
which are large enough to overshadow the effects of  
other phenomena overlooked in the analysis. 

F o r  13C it is customary to express isotopic ratios as 
the per mil variation from a standard ratio. The latter is 
typically that of  the University of  Chicago Standard, 
" P D B "  (Craig, 57; Mook,  73). Since 613C, the custom- 
ary symbol for the per mil variation, typically refers to 
variations in 13C/12C, I will adopt a different symbol, 
135C, for variations in 13C/C. Formally, I will define 
this quantity (in per mil or any other suitable unit) by: 

136C= 1 3 R / l a R o  - 1 (1.23) 

where 13R.  denotes the 13C/C ratio of  the standard. 
For 14C the analogous formula is: 

1 4 ~ C =  14R/14Ro - 1 (1.24) 

where 14Ro denotes the standard ratio. (This ratio is 
typically 0.95 of  the ratio of  an Oxalic Acid standard 
furnished by the U.S. National Bureau of  Standards.) 
Hence for either isotope: 
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8C = R / R  o - 1. (1.25) 

For reservoir i the observable change in 5C from time 
tl to t2 is related to the observable Suess Effect, Si2, by: 

(6C)i 2 - (SC)i 1 = (Ri l  /Ro)Si2 (1.26) 

i.e., the isotopic change in terms of  6C differs from Si2 
merely in its referral to the standard ratio, R 0,  rather 
than to the ratio, Ril.  

The theoretical change in isotopic ratio for either rare 
isotope caused by admixture of  industrial CO2 since 
preindustrial times, I will denote by A6C i. This quantity 
is related to the theoretical Suess Effect by the relation: 

ASC i = (R io /Ro)S i (1.27) 

or in terms of  label (cf. equation (1.21)): 

= (Roo/Ro)(e/N,). (1.28) 

2. The Stuiver Approximation 

2.1 Mathemat ica l  expression f o r  the approximat ion 

The Suess Effects for 13C and 14C are obviously close- 
ly related. Thus the proposal of  Stuiver (78) to estimate 
the atmospheric Suess Effect for lac  by multiplying the 
14C Suess Effect by the 13C/12C ratio of  fossil fuel 
relative to atmospheric CO2 is not an unreasonable first 
approximation. It will help in understanding how the 
Suess Effect arises to investigate two relatively simple 
examples in which his approximation holds. The first 
example will be considered in this section, the second in 
the following section. 

Let us express the Stuiver approximation using the 
symbols of  the previous section. We identify tl with 
A.D. 1850 and t2 with A.D. 1950, the inclusive years 
considered by Stuiver. His approximation is: 

13Sa2 = _ 13ef a 14Sa2 (2.1) 

where: 
1 a R f - 13  R i o  

13 efi = _ 1-3-Ri ° (2.2) 

denotes the relative variation in 13C/C ratio of indus- 
trial CO2 from that of  preindustrial carbon of  reservoir 
i. A similar expression will apply to IaC (see equation 
2.41). The theoretical Suess Effect corresponding to 
equation (2.1) is: 

1 aSa = _ 1 aefa 1 4 S "  (2.3) 
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According to Stuiver, 13e; is equal to 0.018 (often 
written 18°/00) for A.D. 1850-1950. 

2.2 A simple model  to illustrate the approximation 

Let us consider a simple geochemical model in which 
a perturbation by industrial CO2 is imposed on two 
interacting carbon pools which would otherwise be in a 
steady state (Fig. 1). We will assume that the two reser- 
voirs exchange carbon of  all isotopic forms according to 
a first order kinetic law in which the flux of  a given iso- 
tope from one reservoir to the other is proportional to 
the amount  of  that isotope in the reservoir from which 
the flux emanates. Therefore,  the proportionality con- 
stants are the same for carbon-total and both rare iso- 
topes, i.e. isotopic fractionation does not occur. 

One pool, reservoir a, represents the atmosphere; the 
other,  reservoir b, represents a second carbon pool 
which exchanges carbon directly with the atmosphere. It 
might, for example, be either biospheric or oceanic. Let 
us restrict our concern to reservoir exchanges which 
appreciably influence the atmospheric carbon distri- 
bution on time scales of  100 yr or less. Thus we assume 
that changes in the fluxes are not appreciably influenced 
by radioactive decay for which the time constant is the 
order of  8000 yr. 

yf (t) 

N, (t} ] 
/ 

K~N b (t) [ KabNo(t) 

Rf)~f (t) 

1 
*No(t) 

obNa 

Nb(t} *Nb(t )  

Fig. 1. Two-reservoir model in which exchange of carbon-total is pro- 
portional to the amount in the donor reservoir for all isotopes. 

2.3 Basic equations f o r  carbon-total 

The time dependent amounts of  carbon-total, Na and 
N b, in the above described model, are influenced by the 
instantaneous industrial source, "y f, according to the 
pair of  first order differential equations: 

dNa/dt = kbaNb - kabNa + ~/f I 

dNb/dt = _ khaN b + kabga 
(2.4) 

where kba and kab denote constant (i.e. steady state) 
transfer coefficients and t denotes time. The source 
term, %,f, is related to the cumulative industrial CO2 pro- 
duction, Q, according to: 

t 
Q= / 7f dt" (2.5) 

to 

Charles D. Keeling 

To solve equation (2.4) we decompose each carbon 
mass, Ni, into a steady state term, Nio, and a pertur- 
bation, ni, yielding the steady state equations: 

d N o / d t  = - dNbo/dt = kbaNbo - k b N  ° = 0 (2.6) 

and the perturbation equations: 

dna/dt= kbanb - k a b n  a + 7 t 

dnb/dt =_ khan b + kabn a . 

(2.7) 

(2.8) 

The mathematical solution to these equations is conve- 
niently obtained using Laplace transforms. Each term is 
multiplied by e-st where s is a generalized frequency 
appearing in the transforms but not in the final 
solution. Integrating from t = 0 to oo : 

(S + kab) h a  kba fib = ~t f I 
( 

(S+kba)~b- k b ~ =0) 
(2.9) 

where: 

where: 

hi= f°°e-Stnidt 
"0 

~ff = / ° °e -S tT fd t  
o 

o o  

f e" t (d  ni/dt)dt = - (nt)t= o + s n i 
o 

= $  n i 

i=a, b. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

In matrix notation and with ~rb preceding fro (as a con- 
venience to check with section 9, below): 

I '1 I] I°7 nb = .(2.14) 

L-k .  o L ,j 

Since the ffl are related by a set of linear algebraic 
equations, they are readily solved for by the use of  
determinants (see for example, Bronson, 69). Thus: 
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qt(s + kba) 
ha = s(s + kba + kao) 

f Flb S($ + kba + kab)  

(2.1 s) 

The general solution for n a and no will not be discussed 
(see for example, Keeling, 73b). Considerable insight 
into the properties of this model can be obtained, how- 
ever, by considering the case of an industrial CO2 
source which obeys the exponential relationship: 

Tf  = Tfo e u t  (2.16) 

w h e r e  "Yfo and # are constants. 
As shown in Fig. 2, the production of industrial CO2 

is actually approximated by an exponential function of  
the form of  equation (2.16) except for the period A.D. 
1914 to 1945 when two world wars and a great economic 
depression interfered with industrial growth. The value 
of/z  for a fit of the production data both before and 
after this period is close to 1/22 yr -1. It is likely that a 
somewhat slower but also nearly exponential growth 
prevailed for many years before 1860 (Hubbert, 74). 

3 
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Fig. 2. The rate of  production of  industrial CO 2 plotted in units of  
1012 g of  carbon per year. Dots: annual  values based on fuel pro- 
duction data  of  the United Nations as interpreted by Keeling (73a) for 
A.D.  1860 to 1969, thereafter as computed by Rotty (77, and private 
communicat ion) .  Solid curves: exponential fits to the intervals A.D. 
1860 to 1914 and 1945 to 1978. The respective e-fold times, /z q,  a re  
approximately 2,1.0 and 22.5 yr. Dashed curves: extensions o f  the solid 
curves beyond the interval o f  fitting. 

With such a rapid rise in production (a doubling time of 
the order of 20 yr) the precise rate of growth is in any 
case unimportant before A.D. 1860. We may therefore 

assume to good approximation that the cumulative pro- 
duction up to 1914 is: 

t 
Q= / 7fdt  (2.17) 

_ _ 0 0  

= (.~to/P) e ut. (2.18) 

It also turns out that the equation (2.18) leads to quite 
realistic predictions over the recent interval A.D. 1945 
to 1978, since the period is greater than one e-fold time 
(Bacastow, 79). 

It can be demonstrated that, if equation (2.18) holds, 
the solutions to equations (2.7) and (2.8) are of the 
form: 

n i = nio e u t  (2.19) 

where the nio are constants. If the exponential 
relationships (2.16) and (2.19) are introduced into the 
perturbation equations (2.7) and (2.8), the factor, e~ t, 
appears in all of the terms and factors out. The result in 
matrix notation is: 

u + kba - k b  1 

-kba U + k b J 

= (2.20) 

L a°.J L'~o/ 

with the solution: 

"/toOa + kba) 
na° U(la + kba + kab) 

"/fo ka b 

nbo UOa + kb" + kab) 

(2.21) 

Thus the general solution for the transforms, ~,, can be 
further transformed into a solution for the nio by 
making the replacements: 

nio/(s - u) = ~ } 
~ r o / ( s  - u )  = ~ r  " 

U = $  

(2.22) 

The first two replacements proceed directly from the 
Laplace transforms of equations (2.16) and (2.19), while 
the third is readily established by inspection after the 
first two replacements have been made. The corre- 
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sponding reservoir fractions 
equations (1.9), (2.18), (2.19)): 

are of  the form 

r i - ~ - -  

nioP 

7fo 

(cf. and the perturbation equations: 

Hence: 

I d + kba 

r . -  t 

Id + kba + kab 

r, -id + kba + kab 

d ~H a 
(2.23) dt - kb~ *nb - kab *ha - *X*no+RfTf 

(2.24) 

Since #, kab and kba are constant, ra and r b are invariant. 

2.4 Basic equations f o r  rare isotopic carbon 

Let us next consider the corresponding equations for 
the rare isotopes. For 14C, the industrial perturbation is 
superimposed on a steady state in which radioactive 
decay is continually removing 14C while cosmic rays are 
continually producing it. If time variations in 14C pro- 
duction are neglected, the 14C production rate, 14I~o, is 
a constant related to preindustrial decay in both reser- 
voirs by: 

14F ° --- :t4~k (:t4Nao + 14gbo ) (2.25) 

Charles D. Keeling 

where  14~ denotes the radiocarbon decay constant. 
Generalizing to both rare isotopes: 

d *n b 

dt 
- -- kba *n b + kab *n. -- ~ *nb I . (2.29) 

We will, for simplicity, assume that Rf, the 13C/C or 
14C/C ratio of  industrial CO2,  is constant. 

Since our concern is restricted to processes which 
appreciably influence carbon distributions on the time 
scale of  100 yr or less, we are justified in neglecting the 
perturbation terms, *)~n,, for radioactive decay, in com- 
parison to the transfer fluxes kba*nb and kab*na. 

With the terms *X*nl omitted, equations (2.29) are 
identical to those for carbon-total except that *n i re- 
places n i and R_t7 f replaces 3'f. For the case where 7f is 
an exponential function of  time (equation (2.16)), it 
follows that the *n i are also exponential time functions 
of  the form: 

= *n. e pt (2.30) ~ni lo 

analogous to equation (2.19). Carrying out a calculation 
similar to that for carbon-total, we find that: 

~n~o = RfTto(la+ kba) } 
.(la +kba + k b) . (2-31/ 

RfTfokab 
*rib° #O.t+ kba +kab ) 

*F ° = *X (*Nao + *Nbo) (2.26) 

where, since 13C is nonradioactive: 

:tax= 0 ] 
i 

13F ° = 0 
(2.27) 

The steady state equations for 13C and 14C are there- 
fore: 

dt - kba *Nb° - kab *N~° + *ro - *k'N°°= 0" 

d*U o 
dt - -  kba *Nb° + kab *Na° - *X*Nbo = 0 

(2.28) 

2.5 Derivation o f  the Suess Ef fect  and the Stuiver 
approximation 

Comparing the above results for rare isotopic carbon 
with equations (2.21) for carbon-total,  we find for the 
exponential case that: 

*nio =Rtnio" (2.32) 

Also, it follows from the definition of  the reservoir 
fractions for carbon-total and the rare isotopes (see 
equations (1.9) and (1.14)) that: 

*nir i 
*r i = - - - -  

Rioni 
(2.33) 

Therefore,  for the exponential case (equation (2.32)): 
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R f  

*r. = - -  r i . (2.34) 
R. 

t o  

The corresponding theoretical Suess Effect is obtained 
by substituting this expression for *r i in equation (1.22): 

(R f - -  R i o ) Q r  i 
S; - (2.35) 

R i o N  i 

or, in terms of the industrial CO2 isotopic variation 
factors, efi, defined by equation (2.2): 

Q 

Si = Efi N_  ri " (2.36) 
i 

This expression is readily evaluated numerically for 
either reservoir. First, the r i are found in terms of  the 
transfer coefficients, kab and kba by equations (2.24). 
Then the N i are computed from the r i using equation 
(1.8), i.e.: 

N i = N. ° (1 + riQ ) . (2.37) 

For 13C, which does not decay radioactively, the 
steady state equations (2.28) simplify to: 

k b 1 3  N = (2.38) ao kba 1 3 g b o  

whence (cf. equation (2.6)) the isotopic ratios at steady 
state are equal, i.e.: 

13Ra ° = 13Rb ° . (2.39) 

Thus for 13C (cf. equation (2.2)): 

13 e = Z ( 2 . 4 0 )  fa 3 e fb " 

For 14C, since R f i s  zero (see equation (1.15)): 

14~.fi = -  1 . (2.41) 

Therefore it follows from equation (2.36) that: 

l a a i  = __ 1 3ef  a 14Si  (2.42) 

and thus the Stuiver approximation holds for both 
reservoirs. 

3. Another look at the Stuiver Approximation 

3.1 A more  general per turbat ion  mode l  

The foregoing two reservoir model, although useful 
as an introductory attempt to derive the Suess Effect for 
13C and 14C, is an inadequate representation of atmos- 
pheric CO2 exchange with either the land biosphere or 
the oceans, because not even approximately do either of  
these reservoirs exchange carbon with the atmosphere in 
accordance with a first order kinetic law of  the kind 
depicted by equations (2.4). 

With respect to carbon-total,  a far more realistic 
model can be devised based on the assumption that the 
change in flux of  carbon emanating from a reservoir is 
proportional to the change in amount  of carbon in the 
reservoir. The perturbation equations for this model 
take the form: 

dna/dt = kba ~b nb -- kab [3a na + 7f 

d n J d t  = - kb.  ~b nb - k b ~,, na 

(3.1) 

where, as before, kba and kab denote exchange coeffi- 
cients appropriate to the steady state, represented by 
equations (2.6), (2.28), and (2.39). The former pertur- 
bation fluxes, kban b and kabn a, are now modified, how- 
ever, by new constant factors /3 b and /3 a. The latter, 
which I will call "per turbat ion factors" ,  may differ 
from unity by any finite amount.  This model is illus- 
trated in Fig. 3. 

~o = 

Kbo( N bo+ ,8 b n b) 

[ [No 

7f 

N O =Noo+ no 

Fob: 

~ Kob(Noo +,8o %) 

Rf yf 

1 
Ro:*N o /N  a 

*Ebo = *Fob: 

RbFbo IRo Fab 

= Nbo + n b Rb=*NblN b 

Fig. 3. Two-reservoir model in which exchange of  carbon-total is pro- 
portional to the change in amount in the donor reservoir. Rare iso- 
topic carbon exchange is proportional to the isotopic ratio of the 

donor reservoir without isotopic fractionation. 

3.2 Exchange  f l uxe s  o f  carbon-total  and  rare isotopic 
carbon 

Although the model described in Section 2 was solved 
by direct consideration of  the differential equations 
(2.4) and (2.29) governing carbon perturbations in each 
separate reservoir, it is convenient for the understanding 
of  this more complicated model to consider first the 
relationships for the fluxes of  carbon transferred 
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between reservoirs. For carbon-total it follows from 
equations (2.6) and (3.1) that: 

Fab = kabNao "l- ~a kab na 

= Fbo(l  + ¢1 n/Nao ) 

Fba = kbaNbo + ~a kba nb 

-- Fbo(1 + ~b %/Nbo) 

(3.2) 

where Fij denotes the flux of  carbon-total from reservoir 
i to j ,  with steady state value, Fio -- Fjo, i.e.: 

Fb°= kabNa° t .  

= kbaNbo 
(3.3) 

There is no compelling reason that the above flux 
equations (3.2) should apply to rare isotopic carbon 
since the physical, chemical and biological processes 
which determine/~a and/3 b are only slightly influenced 
by the presence of  rare isotopes. If we assume that reser- 
voir exchange involves no preference for one isotope 
over another,  i.e. that isotopic fractionation again does 
not occur, the flux of  carbon-total at any given moment 
will carry with it the same mix of  isotopes as exists at the 
moment in the emitting reservoir. Hence the rare iso- 
topic fluxes will obey the relationships: 

% b  = RaFab t (3.4) 

*Fba = RbFba J 

where *Fig denotes, the flux of  rare isotope from reser- 
voir i to j. Substituting for Fab and Fba from equations 
(3.2) we obtain for rare isotopic carbon: 

*F"b =RaF°°(1 + ~ana/N°) l. 

I *Fb. = RbF b o(1 + ~b%/Nbo) 
(3.5) 

3.3 Perturbations of the exchange fluxes 

The time dependent rare isotopic flux from reservoir 
a to b, *Fab , departs from its steady state value by the 
perturbation: 

= R F b - R oFbo ] 

(3.6) 

Charles D. Keeling 

or, in terms of  the isotopic label, Ca, (see equation 
(1.19)): 

A*Fab = Fbo 
e R o (1 +[3ana/No) Rao(3an a 

+ 

(l+na/No) Nao 
(3.7) 

Similarly for the rare isotopic flux in the reverse direc- 
tion: 

A ~Fba = RbFba - Rb°Fb° ~ .  (3.8) 

"x 

= FboI Rb(1 +flb nb/Nbo)--Rbo] J 
In terms of  label, e b,: 

 %o=F o 
ebR o (1 + ~bnb/gbo ) + Rbo[Jbnb] 

Nbo (l+nb/Nbo) ~bo J" 
(3.9) 

These expressions are non-linear owing to the pertur- 
bation factors: 

1 + ~ini/Nio 
~i = (3.10) 

1 + ni/N~o 

which multiply the label variables, e i. For the case where 
the perturbation factors /3 i are equal to unity, these 
perturbation functions are also equal to unity, and we 
obtain fluxes appropriate to the earlier model. For the 
general case, where the/3 i depart from unity let us re- 
write equations (3.7) and (3.9) in terms of  the 4~i and 
steady state exchange coefficients kba and kab. We then 
obtain the expressions: 

A * F b  

A*Fb, 

= kab(RaodPaea +Raoflana ) 

=" kba(~ao ~b eb + Rbo~bnb) 

} (3.11) 

3.4 Solving the model equations 

The perturbation equations for carbon-total may be 
solved in the same manner as for the previous models 
since they differ only in that the former constant factors 
kab and kba of  equation (2.7) and (2.8) are replaced by 
new constant factors, ~akab and [3bkba. Thus, the La- 
place transforms, hi, (cf. equation (2.15)) are given by: 
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~':(S + ~b kba) 
h = " s(s + ~bkb. + ~akab) 

?t~a ka b 
h b = s(s ÷ ~o kba + ~.k b) I . 

(3.12) 

The perturbation equations for the rare isotopic 
abundance, *hi, take the general form: 

"x 
d*na/dt = A*Fba - / X * F  b + R r T t l  

J 
I 

d*nb/dt  = A * F  b - A *Fba 

(3.13) 

From the definition of  the label variables, el, (equation 
(1.18)), it follows that the time rates of  change of  the ei 
are related to those of  the *hi according to: 

Raode /dt  = d*na/dt - Raod n J d t  

Raodeo/dt = d*nb/dt  - Rbo d nb/dt  

. (3.14) 

Substituting for the d*ni /d t  via equation (3.13), for the 
dni /d t  via equation (3.1), and subsequently for the A*Fij 
via equations (3.11): 

Raodfa]dt = Rao(kbaCbfb -- kbCaea) 

+ (Rt  - Rao)  ~[t + (Rbo - Rao)kba{3bnb 

Raodgb/dt = Rao ( -  kbae~beb + k b Cae ) 

- -  (.Rbo -- Rao)  kab~ana 

(3.15) 

For 13C, since the isotopic ratios at steady state are 
equal (cf. equation (2.39)), the final terms in both 
equations (3.15) vanish. 

For 14C the isotopic ratios of  the carbon reservoirs 
differ at steady state owing to radioactive decay even in 
the absence of  isotopic fractionation. For reservoirs or 
portions of  reservoirs which are in contact with the 
atmosphere and which exchange carbon so as effectively 
to turn over their inventories of  carbon in a 100 yr or 
less, the average ratios differ from that of  atmospheric 
CO2 by a few percent. In this case, although the terms in 
(Rb o ~ Rao) do not vanish for 14C even for small pertur- 
bations, they may be ignored with only a small loss of  
accuracy. 

Let us therefore neglect these terms for both rare iso- 
topes and further restrict ourselves to small pertur- 
bations so that the non-linear quotients, 4~i, approach 
unity. Equations (3.15) then simplify to: 

d~[dt  = k b J  b -- k b ~  + eta 7: 

dgb]dt = _ kbaeb + k b f ~ 

(3.16) 

(3.17) 

where era is as defined by equation (2.2) extended to 
both rare isotopes. 

These equations are of  the form of  equations (3.1) for 
carbon-total,  except for the factor, efa, which multiplies 
the industrial CO2 source term, 3'f, and the absence of  
the/3 i which appear in equation (3.1). Therefore,  the La- 
place transforms of  the e i are given by: 

ei = era hi '  (3.18) 

where ~ri' denote the i f / o f  equations (3.12) evaluated 
for/3i = 1, i.e.: 

= ~:(s+gba) t 
~ ' s(s + gb. + kab) 

~?ab 
hb ' s(s + kba + kab ) 

(3.19) 

From the definition of  the Laplace transform 
(cf. equation (2.10)) it follows that: 

= ' ( 3 . 2 0 )  ~i {~fa n i • 

3.5 Derivation o f  the Suess Ef fec t  and  Stuiver 
approximat ion  

For the model under consideration, the Suess Effect is 
obtained by substituting the above result in equation 
(1.21): 

R n .  r 
a o  l 

Si = e:a R.  N. 
1 o  I 

(3.21) 

For 13C, since Rao and Rbo are equal (see equation 
(2.39)): 

t 
n. 

13Si = 13efa IV i (3.22) 

F o r  14C, Rao and Rbo differ by a few percent owing to 
radioactive decay, but since this inequality was disre- 
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garded in the derivation of  equations (3.16) through 
(8.20), and since it can produce only a few percent error 
in 14Sb, and none in 14S a, let us ignore it again. As in the 
previous model, 14efa is equal tO negative one (equation 
(2.41)), and hence, assuming 14Rao/14Rbo is equal to~ 
unity: 

H i ' 

1 4  S = _ ( 3 . 2 3 )  
i N. 

! 

Eliminating n i' between equations (3.22) and (3.23) 
we again obtain equation (2.42). Thus the Stuiver 
approximation again holds. Furthermore,  the 
derivation, in this case, does not assume any special ex- 
ponential form for the input function, 3% The Stuiver 
approximation thus applies irrespective of  the form of  
input. Finally, the methodology is easily extended to 
any number of  reservoirs exchanging with the atmos- 
phere, so that a model including both an oceanic and 
land biospheric reservoir will also obey the Stuiver 
approximation if, again, all isotopic fractionation 
effects are neglected except for the difference in ratio 
between industrial and atmospheric CO2 and if the 
approximations that led to equations (3.16) and (3.17) 
are made again. 

On the other hand, it would seem unlikely that the 
Stuiver approximation would hold if the non-linear or 
the final terms in equations (3.15) were important 
contributors to the time variations of  the e i. These terms 
involve the carbon-total perturbation factors, ~i, which, 
depending on their magnitudes, will have more or less 
influence on the computed Suess Effect independent of  
the isotopic industrial CO2 factor, era. Also, it would be 
unlikely that the influence of  the/~i would almost cancel 
out when relating 13Si to 14Si. 

Still more seriously, the assumption that the flux of  
carbon-total carries with it the same mix of  isotopes as 
the emitting reservoir (equation (3.4)) neglects known 
isotopic fractionation effects of  the order of  magnitude 
of the isotopic industrial CO 2 factor, 13~fa. Therefore, it 
is important to consider a model of  the carbon cycle in 
which fractionation is included, in order to determine 
precisely how large are the influences of fractionation, 
as well as of  the perturbation terms, /3 i, on the Suess 
Effect.  

In regard to the land biosphere, it is also important to 
improve on the formulation for carbon-total because 
the perturbed uptake of  CO2 may depend not only on 
the change in the amount  of  atmospheric CO2, as 
considered above, but also on the amount of  plants 
photosynthesizing CO2. 

Because much of  the needed formulism is already 
revealed by considering more general versions of  the 
two reservoir model just discussed, I will postpone con- 
sideration of  models with more than two reservoirs until 
the general isotopic properties of  the two reservoir 
model are examined in detail for several pairs of  
reservoirs of  interest to the industrial CO2 problem. But 
before undertaking even this examination, it will be 
useful to make a few general remarks about the appli- 
cation of  reservoir models to the carbon cycle. 

4. General remarks concerning two reservoir models 

4.1 Donor reservoir model 

A reservoir or " b o x "  model typically describes a sys- 
tem of  reservoirs or compartments in which the 
behavior of  a trace substance is prescribed principally or 
solely in terms of  its rate of  entering and escaping from 
each reservoir. A reservoir boundary may be a clearly 
defined physical surface, such as an air-sea boundary, 
or it may merely divide regions into convenient sub- 
regions, such as shallow and deep ocean water. Within 
the volumes described by these boundaries only 
averages or total of the properties of  the reservoir are 
considered. 

If time variable aspects of  some geochemical cycle are 
under investigation, the flux of  chemical tracer passing 
from one reservoir to another is most often assumed to 
vary in a prescribed way with the total amount, or mass, 
of  tracer contained within the " d o n o r "  reservoir, i.e. 
within the reservoir from which the flux emerges. This 
time variable behavior of  the model is often compared 
with a time invariant condition called a "steady state",  
in which the mass of  tracer is everywhere conserved, in 
spite of  gains and losses between individual reservoirs. 

To express such a model in mathematical terms, let 
flux, F, be a function of  the mass of  tracer, N, in the 
donor reservoir: 

F = f(N) (4.1) 

where both F a n d  N m a y  vary with time, t. Assume that 
F possesses derivatives f ' ,  f " ,  .... with respect to N. Ex- 
panding f i s  a Taylor 's  series in the neighborhood of  Fo 
= f(No): 

F= F + f '  ( N  ) ( N -  No) + 1/2 f "  ( N o X N -  N ) 2 + ... 

(4.2) 

If the fractional increase in tracer in the reservoir is 
only a few percent (as is the case for additions of  indus- 
trial CO2 to the carbon cycle up to the present time) it is 
likely that equation (4.1) can be approximated by re- 
taining only the constant and first order terms in the 
expansion, i.e.: 

F -  F ° : y '  No) .  (4.3) 

This expression I will rewrite: 

AF = (Fo/No)/3 n 

=kl~n 

(4.4) 

(4.5) 

where AF and n denote, respectively, the departures of  F 
and N from the unperturbed values F o and N o, and/~ is 
a constant such that (Fo/No) ~ is equal to f '  (No). The 
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constant k (equal to  F o / N  o) is often called a " t ransfer  
coefficient".  In a steady state the perturbation factor/3 
is not established; with respect to an emerging flux only 
the transfer coefficient, k, is relevant. The reciprocal of  
k is sometimes called a " tu rn  over"  or "residence" 
time. This time factor is a property of  the steady state. It 
is not a governing property of  the perturbation unless/3 
is unity so that: 

F = kN. (4.6) 

4.2 Coup led  reservoir m o d e l  

For transfer of  carbon from the atmosphere to the 
land biosphere, equation (4. l), in spite of  its generality, 
is still an inadequate representation. Rather, the trans- 
fer rate in general depends on changes in amount of  
carbon in the receiving biospheric pool as well as in the 
atmospheric donor  pool. This is because the rate of  
photosynthesis depends on the amount  of  plants assimi- 
lating carbon. 

To allow for a dependency of  flux on the receiving 
reservoir mass let us postulate that the flux from reser- 
voir " a "  (say, the atmosphere) to " b "  (say, the land 
biosphere) is given, not by equation (4.1), but by the dif- 
ferentiable function: 

F b = f ( N ,  Nb).  (4.7) 

Expanding f in a Taylor 's  Series, the departures of  Fab 
from its steady state value Fabo is given by: 

' ~ b = F b o  t3 a -  + f b - - + f ° a  
N a  o Nbo 

b + fab "'" (4.8) 

where the /3 i and Bi.i are constants, and as in previous 
sections, Nao, and Nbo denote steady state amounts of  
carbon-total,  and n i is written for N i ~ Nio. To first 
order the perturbation flux, AFab , is given by the ex- 
pression: 

~Wab = Fbo 

H a n b ] 

fa N + f b ' - -  
ao Nbo 

(4.9) 

where a prime indicates a factor related to an entering 
reservoir, and where Fbo denotes the steady state flux of  
carbon-total.  

Although the perturbation factors /3 a and /30' arise 
from mathematical considerations, they have an easily 
grasped practical significance. Suppose that is is estab- 
lished that a small, say 1%, increase in the concen- 
tration of  atmospheric CO2 produces an x% change in 

the growth of  individual plants. Then, in the absence of  
precise information on the growth behavior and if x is 
not more than a few percent, it is probably reasonable 
to assume that a 2°7o increase in atmospheric CO2 will 
produce a 2x% change in growth. The factor x is ex- 
pressed in the model by/3 a. A similar argument applies 
to the factor/3b' .  

If the flux from reservoir b to reservoir a is also 
assumed to have a dual dependency on N a and N 0, and if 
again only first order terms are retained in a Taylor 's  ex- 
pansion, the returning perturbation flux z)~Fba is given 
by: 

t nb n a } 
z2tFba = Fbo fib - -  + f a' N " 

Nbo ao 

(4.10) 

It follows that the net flux between reservoirs a and b is 
given by: 

z~tdTa b -- Z~'b a = F b o t " "Z} (fo- t3a') i - - ( f b  --fb ) 
a O  

(4.11) 

In terms of  the steady state transfer coefficients de- 
fined by: 

kba = F b ° / g b °  l 

kab = Fbo/Nao 

(4.12) 

equation (4.11) may be rewritten: 

AF~b - AFba = kab (fa - fa' ) n - kba ([3 b - fb '  ) rib" 

(4.13) 

4.3 Higher  order per turbat ion  mode ls  and  their 
s impli f icat ion 

In solving reservoir models by numerical approxi- 
mation it may be preferable to retain higher order terms 
of  the Taylor 's  expansion to allow for known or postu- 
lated non-linear effects (Kohlmaier, 78). For this pur- 
pose the equations just derived may be reinterpreted by 
including higher orders within the definition of  the per- 
turbation factors,/3 a, /3b', etc. Thus, for the flux from 
reservoir a to b let: 

= - - + f  
'Sa fao+'SaX0N ~o,--+faz0 

ao Nbo ao 

2 

, , n b n b , ( ~ b o )  ~b =~bo '+fb  10 - -  +faol" - -  +fib 20 4 
Nbo Nbo 

(4.14) 
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where the factors ~3ij k (i = a) and/3ij k' (i = b) are con- 
stants, and cross terms of  the original expansion are in- 
cluded in either/3 a or /30 '  depending on convenience in 
the computat ions.  

Although equations (4.9), (4.10) and (4.11) are a 
useful starting point in setting up a model, in practice 
they may be simplified for the carbon cycle. For the 
land biosphere it is reasonable to assume, a priori, that 
the release of  CO2 by plants is not influenced by 
changes in atmospheric CO2, i.e. that/3 a '  is zero. Also, 
it is possible that whatever the manner  in which the up- 
take and release of  CO2 is perturbed by industrial CO2 
both fluxes will depend on the size of  the biospheric 
pool to nearly the same extent, so that ~b and/3 b ' will be 
nearly the same magnitude.  Thus it may suffice to 
assume: 

t /3a = f3b - ~b = 0 (4.15) 

as was done by Bacastow and Keeling (73). 
In the case of  exchange between the a tmosphere and 

the oceans and within the oceans, the expressions 
involving the perturbation factors may also be consider- 
ably simplified as discussed in sections 7 and 8. 

4.4 External  factors  in atmospheric-biospheric carbon 
exchange 

In addition to interreservoir transfers of  tracer which 
result f rom mechanisms intrinsic to the model,  further 
tracer transfers are allowed in the formulation of  box 
models provided that they arise f rom causes external to 
the reservoir system and thus are not functions of  the 
Ni. 

In modeling the carbon cycle the addition of  indus- 
trial CO2 to the a tmosphere is such an external process. 
Other external processes may also be important ,  
however. Considerable evidence has been presented 
recently (Adams, 77; Bolin, 77; Revelle, 77; Woodwell,  
78; Wong, 78) that man has significantly reduced the 
carbon content of  the land biosphere by land clearing, 
soil cultivation, and man-made  forest fires. Also by 
reforestation, fire prevention, and fertilization of  soils, 
man has promoted plant growth which to some degree 
may have counteracted man induced losses. These bio- 
spheric changes are reflected in changes in atmospheric 
CO2 since, on a global basis, the atmosphere is the prin- 
cipal source and sink of  land biospheric carbon. 

That  man ' s  activities may have directly resulted in 
losses of  carbon f rom the biosphere does not mean that 
the biospheric pool has necessarily lost more carbon to 
the a tmosphere than it has gained back by internal 
mechanisms. For example, forest fires temporari ly 
remove large amounts of  carbon f rom the areas 
affected, but the forests, if not further disturbed by man 
after a fire, will usually grow back. Unless the frequency 
and severity of  forest fires varies widely with time, the 
net global effect is small. But even if extended areas of  
land are irreversibly degraded with a significant loss of  
carbon and consequent increase in the atmospheric con- 
centration, this increase may in turn accelerate uptake 

of  carbon in undisturbed areas of  forest or grass land so 
that the net global loss of  carbon f rom human activities 
is not as great as would appear  f rom the direct impact. 
Reservoir models allow us to examine the interplay of  
such external and internal disturbances to the preindus- 
trial carbon cycle. 

The properties of  carbon reservoirs provide no direct 
basis for estimating the strengths of  external processes. 
In the direct solution of  the modeling equations, the 
external sources are specified in the model as functions 
of  time. But once this specification is made, the rates of  
change in the masses, N i and *N i, can be calculated on 
the basis of  the internal responses specified by the ex- 
change coefficients, k U, and perturbation factors, /~i and 
Hi' .  To estimate one or more external sources by means 
of model calculations requires an inverse solution of  the 
model,  in which these external sources are deduced from 
a knowledge of  the time variations in one or more of  the 
masses, N i or *Ni. Almost  all calculations until now 
have employed direct solutions of  the equations, but 
inverse solutions may become increasingly useful if reli- 
able time series become established for 13C and 14C 
(Siegenthaler, 78). 

In most cases, the fluxes between reservoirs cannot be 
determined from direct observations with the accuracy 
and on the large scale basis required for modeling the 
global carbon cycle, and thus they are not an aid in 
inferring external sources. 

As noted in section 2, we cannot be sure that the 
carbon cycle was in balance before the industrial era, 
but in the absence of  definite information it is perhaps 
better to assume a steady state than to guess at some 
other preindustrial condition. But if information is 
adequate, further external sources may be added to the 
model to reduce the errors arising from having assumed 
a preindustrial steady state. 

5. A detailed two reservoir model for carbon-total 

Let us return to a discussion of  the Suess Effect by 
examining one at a time the reservoir exchanges which 
result in significant readjustments of  13C/C and 14C/C 
ratios when industrial CO2 is added to the atmosphere.  
To begin, let us consider a general case which is most 
directly applicable to the land biosphere but is suffi- 
ciently general to be adaptable to other reservoirs as 
well. Afterwards we will give specific attention to air-sea 
and subsurface oceanic exchanges. 

The general two reservoir model is depicted by Fig. 4. 
As an initial steady state condition, let us postulate that 
the internally controlled fluxes of  carbon-total  between 
reservoirs " a "  and " b "  are in balance, and that no 
external processes are present. In terms of  the symbols 
of  section 4: 

Fbo = kba Nbo = kab Na o" (5.1) 

Subsequent to the time of  steady state the time 
changes in carbon-total  abundance in reservoirs a and b 
are given by the differential equations: 
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d N I d t = F b a  - F a b  +'Ya t 

d N b / d t  = F b - Fba + 3' b 

(5.2) 

where Fab and Fba, as before, denote the total fluxes of  
carbon-total from a to b and return, and where the 'Yi (i 
= a, b) denote the sum of  the external sources of  
carbon-total for reservoirs a and b respectively (exter- 
nal losses from reservoirs a and b are expressed as nega- 
tive values of  3'a and 3"b)- 

The corresponding equations for the perturbations in 
N a and N b from steady state are: 

d na /d t  = AFba -- AFab +Ta] .  

d nb /d t  = AFab -- AFba + 7b 
(5.3) 

If the difference, zS, F a b -  ZXFba, is as specified by equa- 
tion (4.13): 

[d/dt + kab ([3 a -- {3 a' )] n a - kba (fib -- fib' ) nb = 7a 1 

? 
[d/dt + koa (/~b /~b' )] nb -- tab  (fJa -- (Ja') na = 7b ) 

(5.4) 

where the equations are arranged with internal processes 
represented on the left and external processes on the 
right side of  the equality sign. 

Since in general the perturbation factors, /~i and ~i ' ,  
are functions of  the n i according to equations (4.14), the 
differential equations (5.4) are non-linear and cannot be 
solved by exact analytical methods. If, on the other 
hand, variations in the factors/~i and Bi' can be neglec- 
ted, then the mathematical solution to equations (5.4) is 

)'o Ryo)'o +'Fo 

No =Noo+no I Ro=*No/No 

i 

~kNo 

8 

F.: 1 F°b: *F : IF : Kbo(Nim+ ~b n b ) [ Kob{Noo + .Bono ) bo ob 

+ K°b/~: n° / ~ + KboB~% %oRbFbo a,bR*F.b 

Nb=Nb°+nb l 

i 

Rb=*Nb/N b 
J 

t 
)% R),b)*b 

Fig. 4. Two-reservoir model in which exchange of carbon-total 
depends on the change in amount in both the donor and receiver reser- 
voirs. Rare isotopic carbon exchange is proportional to the isotopic 

ratio of the donor reservoir modified by isotopic fractionation. 

conveniently obtained using Laplace transforms as des- 
cribed in section 2. Multiplying each term by e-st and 
integrating from t = 0 to oo : 

(s + k2) h a - k 1 h b = 3'al 

(s + kl)  h b k2 ha 3'b 

(5.5) 

where to save in writing (Keeling, 73b) I introduce the 
perturbation transfer coefficients: 

k l = k b a ( [ 3 b - - { 3 b ' i ]  " 

k 2 kab ((3 a - {3 a' 
(5.6) 

The subscripts will be numbered serially as an aid to 
formulating a four reservoir model in section 9. (Higher 
numbers will be used for air-sea and oceanic exchanges 
and certain special isotopic factors.) 

In matrix notation and with ~b preceding na: 

s+  k 1 - k 2 ]  

- k  1 s + k 2 
] n b 

ha ~ 
(5.7) 

Solving for the E, as in the case of  equation (2.14): 

hb= 
~. (kz) + ~b (s + k z) 

S(S + k I + k2) 

~o (s + k~) + ~b (k~) 

S(S + k 1 + k2) 

(5.8) 

We shall not consider here the general analytic sol- 
ution to equation (5.4), although it presents no particu- 
lar difficulties if the Bi and/3 i '  are constants. For cases 
where the #i and Bi' are not constant, approximate 
numerical methods usually must be resorted to. 

For the previously considered case where the only 
external source is industrial CO2, and if this source is 
exponential in form according to equation (2.16), then 
the reservoir fractions (cf. equations (2.24)) are: 

k 2 

1" b - 

p + k  1 + k  2 

P +k i 
r -  

p + k  1 + k  2 

(5.9) 
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provided that the 3i and 3i',  and hence k I and k2, are 
constant.  

6. The same two-reservoir model for rare isotopic 
carbon 

6.1 Steady-state relationships 

The two reservoir exchange model just considered for 
carbon-total  will now be adapted to predict isotopic 
variations. Since 14C is produced naturally only in the 
atmosphere,  it is now worthwhile to specify unequivo- 
cally which carbon reservoir represents the atmosphere.  
I shall choose reservoir a, so that reservoir b represents 
either the land biosphere or some other reservoir in con- 
tact with the atmosphere,  such as the surface layer of  
the oceans. For convenience, a constant rate of  14C pro- 
duction will be assumed, although it is not necessary to 
do so (Bacastow, 73). 

Estimates of  the actual production of  14C during 
recent years have been made from direct stratospheric 
observations (Lingenfelter, 63), but the long term mean 
rate over time periods comparable  to the turn-over times 
of  the reservoirs of  the carbon cycle is better established 
f rom calculations of  the decay of  14C in these reservoirs. 
This is because the amount  of  carbon and the 14C/C 
ratio are sufficiently well known for each reservoir, that 
a more precise estimate can be obtained by multiplying 
the average amount  of  14C for each reservoir by the 14C 
decay constant,  14X, and summing over the reservoirs. 

Since a two reservoir model does not consider all o f  
the reservoirs of  the carbon cycle which contain 14C, the 
steady state of  radiocarbon for this model is correctly 
described only if the assumed natural production is 
reduced, as by equation (2.25), to match the decay 
occurring in the two reservoirs considered in the model. 
For the atmosphere the 14C steady state may be ex- 
pressed as a balance between production and transfer 
f rom reservoir b which add 14C to the atmosphere and 
radioactive decay and transfer to reservoir b which 
remove laC from the atmosphere,  i.e.: 

1 4 r o  + 14kb a 14Nb ° = (14ka b + 14~,) 14Na ° (6.1) 

where 14F o denotes the steady state rate of  production of 
14C and 14kba and 14kab are  the steady state transfer 
coefficients for 14C. 

These latter coefficients, and similar coefficients, 
13kij, for 13C, in general differ a few percent from those 
of  carbon-total ,  kij, owing to differing chemical proper- 
ties o f  the isotopes. To allow for the resulting isotopic 
fractionation,  I introduce factors, c~ij, such that in 
general: 

*k.. = a.. k.. (6.2) 

where *kij and aij refer to either rare isotope. 
Specifically for the two reservoir model: 

*kba = Otba kba ] 

*ka b = Ota b ka b 

(6.3) 

where O~ab and Otba are identified, respectively, with the 
uptake and release of  CO2 by reservoir b. In general the 
~ i  are constants which are established from laboratory 
or field experiments in advance of  formulating any geo- 
chemical model. 

Eliminating 14r o f rom equation (6.1) via equation 
(2.25): 

(14kb a + 14~.) 14Nb ° = 14ka b 14Nao, (6.4) 

This last equation may be generalized to include the 
stable isotope, 13C, by writing: 

(*kba + *X) *Nbo = *ka~ ' * N  o (6.5) 

where it is understood that 13~, is equal to zero (cf. 
equation (2.27)). 

If  the *kij in equation (6.5) are replaced by aijkij ac- 
cording to equation (6.2), and the resulting equation is 
divided by the second equality of  equation (5.1), we 
obtain as the steady state relationship between the 
isotopic ratios: 

(aba + *~/kb, ~) ( *Nbo/Nbo) = a ~, ( * N o / N o )  

(6.6) 

whence, writing Rio for *Nio/Nio, and rearranging: 

Otab Rao - OtbaRbo = *~k Rbo/kba t .  

= *X aabRao/(Otba kba + *X) 

(6.7) 

For 13C since 13X is zero (see equation (2.27)) these 
expressions establish 13Rbo/13Rao to be equal to the 
quotient of  the fractionation factors, 13Olab/13t~ba . For 
bo th  the land biosphere and the oceans the 13C/12C 
ratios are well enough known to establish the ratio, 
13C~ba/13C~ab, within one or two per mil through this 
relationship. 

The fractionation factors for 14C are expected to be 
the squares of  those for 13C (Skirrow, 65) and therefore 
14O~ba/14Otab is also known once  13O~ba/13t~ab is established. 
If  the 14C isotopic ratio, 14Rbo, is known along with 
14C~ba/14aab, this fact is a basis for establishing kba 
through the first equality of  equations (6.7) since *X is 
non-zero and known for 14C. This equality has been 
used extensively to establish steady state exchange coef- 
ficients for oceanic reservoirs. (For example, equation 
(11.6), below, is a variant of  equation (6.7) so em- 
ployed.) Alternatively, if 14Rbo is not known, but the ex- 
change rate can be established f rom other data as is the 
case for the land biosphere, then 14Rbo can be eliminated 
f rom consideration in terms of  kba using the second 
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equality of  equation (6.7). This is done, for example, in 
deriving equations (6.23) below. 

6.2 Perturbation relationships 

Because of  their low concentrations relative to 12C, 
both 13C and 14C act essentially as passive tracers in the 
carbon cycle. It is thus reasonable to postulate that their 
rates of  transfer vary directly with their isotopic ratios 
in the respective emitting reservoirs. In terms of  the 
fluxes of  carbon-total.  Fij: 

*Fab = Ota~ R a F b (6.8) 

*Fba = aba R b Fba (6.9) 

where isotopic fractionation is prescribed by the same 
factors, aij, which govern steady state exchange of  rare 
isotopic carbon (equation (6.5)). The corresponding 
perturbation fluxes are: 

A * F b  = ~ab [R (F~o + A F b )  -- Rao Fbo ] 

(6.10) 

A *Fba = Otba [R b (Fbo + A Fba)  -- R b o  Fbo ]. 
(6.11) 

Substituting for ~kFab and ZXFba according to equations 
(4.9) and (4.10): 

n n b a 

=°tabFb° [Ra( l+~a  N +~b' ) - R ~ o l .  
ao Nbo 

(6.12) 

n a n b 

~*Fbo =% Fbo [R b (1 +rS a' N-- + ~  - -  ) - R ° ° ] "  
ao Nbo  

(6.13) 

To express these relations in terms of  the pertur- 
bations of  the rare isotope and of  carbon-total, let us 
replace the R i according to: 

*n i RioNio 
R i =  - - +  _ _  

N. N. 
1 1 

(6.14) 

consistent with the definition of  R i (equation (1.1)). 
Also, to simplify the writing let us introduce pertur- 
bation functions: 

1 + [3 i (nJNio) + [Jr '(r~/N'o) 
~b 0 = (6.15) 

1 + nJNio 

analogous to ~b i of  equation (3.10), but allowing for 
dependency on the abundances of  both the donor reser- 
voir, i, and the receiver reservoir, j. 

Substituting these relations in equations (6.12) and 
(6.13): 

A * F  b = Otab Fbo r~b (*na/Nao) + 

[([3a-1)(na/Nao ) ~ b ' ( n J N b o ) ] ]  

Ra° 1 + na/Nao 1 + na/Nao 

A"~Fba = ~ba Fb o ~ba (~nb/Nbo) + 

(6.16) 

+ • (6.17) 
Rb° i + nb/Nbo 1 + nb/Nbo 

The general perturbation equations for 13C and 14C 
are analogous to those for carbon-total (equations (5.3)) 
except that the external carbon-total sources 3'a and 3'b 
are modified by multiplication respectively by the (gener- 
ally time dependent) isotopic ratios, R3" i (i = a, b), 
which are weighted means of  the isotopic ratios for the 
various individual sources. Also, although no radio- 
active source appears in the perturbation equations be- 
cause the production rate, *F o, has been assumed con- 
stant, radioactive decay terms appear as perturbations 
of  the general terms, *)~*N i. Thus: 

d *na/dt = A*Fba - A*Fab +R3" a 7 a - *X *n 

d *nb/dt = A*Fab - A*Fba +RTb 3"b -- *X*nb 

(6.18) 

Substitution of  the expression for A*Fab and A*Fba 
(equations (6.16) and (6.17)) leads to equations which 
contain terms in both the n i and *n i. These equations are 
quite complicated, and as an aid in identifying terms in 
the ni and *ni, I will again introduce perturbation trans- 
fer coefficients, ki, as was done for carbon-total. The 
expressions for the d*ni/dt  then take the general form 
(Keeling, 73b): 

(d/dt + *~ + *k2) *n a - *k 1 *nb = R3" a 3"a + k lo '  na - kg' n ]  

( d / d t + * X + * k l )  *nb *k z *n a =R3" b 7 b - k l o ' n  a + k a ' n  

(6.19) 

where the internal isotopic processes are represented on 
the left side of  the equality sign, and the external source 
terms in 3'i and the terms in carbon-total,  ni, are on the 
right side. The terms, *k i, are perturbation transfer co- 
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efficients for rare isotopic carbon analogous to the 
terms, ki, of  equation (5.5) for carbon-total. The factors 
k9" and klo" are special functions of  steady state para- 
meters and the perturbation factors, 3i and fli' as ex- 
plained below. Since solution for the n i in terms of  the "Yi 
are obtained by solving the carbon-total equations (5.4), 
the terms, k9"nb and klo'na, may be regarded as repre- 
senting external sources with respect to isotopic 
exchange. Since they are not true sources, I will call 
them "virtual  sources".  The proportionality factors, 
k 9" and kl0" (or ki" in general), are designated with 
primes to indicate that they have a different significance 
than the transfer coefficients, kij, and the related pertur- 
bation coefficients, k i and *k i. 

Comparing equations (6.18) with (6.19) after A*Fab 
and A*Fba in equations (6.18) have been replaced ac- 
cording to equations (6.16) and (6.17), we obtain: 

~ba Fbo Cba 
*kl - 

Nbo 

Otab Fbo dPab 
*k2 - _ _  

N 
r io  

(6.20) 

Fb° { abaRb°(1--[fb) OtabRaofl b' 
' I- 

k° - Nb o 1 + nb/Nbo 1 + na/N ° 

Fb° { OtabRa°(1--fa) OtbaRbofa' } 
- 4 

k l ° '  N O 1 + na/N ° 1 + nb/Nbo 

(6.21) 

where: 

(~ab  = 

~ b a  = 

i 

1 + f~ ( n / N o )  + fb (nJNbo) 

1 + (no~No) 

1 + Ha' (ha/No) + Bib (nb/Nb o ) 

1 + (nJNbo) 

(6.22) 

The expressions for the virtual source coefficients, k 9" 
and klo" may be alternately written with explicit recog- 
nition of  radioactive decay by eliminating OtbaRbo via 
equation (6.7): 

kg' - Olab Rao Fbo 

Nbo 

t fb' 1 - fb 
- -  ÷ 

1 + na/Nao 1 + nb/N b o 
(I - *Ao) 

kl 0 ' - 
Otab Rao Fbo 

No 
ti l - ~  [3/ Jr 

+ na/Nao 1 + nb/Nbo 
(1 - *A 

o 

(6.23) 

where I introduce the special function: 

*A ° = *X/(%o Fbo/gbo + *•), (6.24) 

The existence of  the factors (l+ni/Nio) in the 
expressions for *kl, *k2, k 9" and klo" and the possibility 
that any or all of  the/3 i and fli' are functions of  the ni, 
signify that these equations are non-linear and cannot 
be solved by the use of  Laplace transforms or any other 
exact analytical method. 

For small perturbations in which second and higher 
order terms in n i can be neglected, the ki', fli, 13~, andR.ri 
become constants and the ¢io are unity. In this case 
equations (6.20) and (6.21) simplify to: 

*k 1 = Otba kba 

*k 2 = Otab kab 
(6.25) 

ka' = %b kba Rao [~bo' + (1 - fbo) (1 -- *Ao) l 

klo' = %b kab Rao [(1 - fao) + fao' (1 - *Ao) l 

(6.26) 

where flio and 3io' denote the first terms in the expansion 
(4.14). Substitution of  these simplified expressions for 
the *ki and k / i n t o  equations (6.19) leads to linear diffe- 
rential equations. From these equations Laplace trans- 
forms can be derived analogous to equations (5.5) for 
carbon-total. 

For this linear case, in matrix notation, and with *nb 
preceding *n a, the transforms of  equation (6.19) take 
the form: 

l 
.o111 l i b  , 

 ,o,j o 
(6.27) 
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The solutions for the *ni (cf. equation (5.8)) are: 

*hb= 
R"fa ~a ( * k 2 ) + R " [ b  'Yb (S+ *~k+ '#k2) +~ 

(S "t" *X) (S ÷ *)t + *k I -]- *k2) 

- k l o ' h  a + k 9' fl b 

s + *X + e k  1 + *k  2 

R"fa 3'a (s + *X + *kx) +RTb 7b (*kl) 
*ha= + 

(s + *X) (s + *X + *k 1 + *k 2) 

? 

k l o '  h a -- k 9 h b 

s + *X + *k 1 + *k  2 

.(6.28) 

where terms related to external rare isotopic sources, 
R./i, are for clarity separated from terms which arise 
from the virtual sources klo'na and k9"n b. 

6.3 Derivation o f  the Suess Effect  and Stuiver 
approximation 

For the linear case just considered, the solutions for 
the ni and *n i may be obtained for arbitrary inputs, 3'a 
and 3'b, by the use of partial fractions and convolution 
integrals as described by Keeling (73b). The theoretical 
Suess Effects for each reservoir and rare isotope are ob- 
tained by substituting into the expression: 

l('n) 
S i = - -  n i 

N i Rio  

(6.29) 

which derives from equations (I .7) and (1.17). 
To investigate how this general linear case can be sim- 

plified to yield the Stuiver approximation, let us first 
make the simplification that the only external source is 
industrial CO2, so that: 

'Ya = 7f 

RT~ = Rf  1 

7 b = 0 

(6.30) 

Also, let us obtain an expression for isotopic pertur- 
bations in terms of the isotopic label, e i. Taking Laplace 
transforms of  equation (1.18): 

R o ~ = *h i - R i o  h i . (6.31) 

For the atmosphere, if we substitute for *~a via the 
second equation of (6.28), for na and nb in the resulting 
expression via equations (5.8), and then we make the 

substitutions indicated by equations (6.30) and finally 
we multiply both sides of the resulting equation by the 
Laplace transform frequency, s, we obtain: 

R r 3,ts (s + *X + *k0 
sR [ -  + 

a o  a 

(s + *•) (s + *X + *k 1 + *k2)  

"~'f [ k l o '  ($ + k  1) - kg'  k 2 ] 

(S + *~,. + *k 1 + ~'k2) (S + k 1 + k2)  

Ra o %(s + k I ) 

s + k  1 +k 2 
(6.32) 

The Stuiver approximation is a more restrictive case; 
it is expected to hold only if we further assume that iso- 
topic fractionation and radioactive decay are negligible, 
i.e.: 

Ra° = Rb° "1 

Ctb = t~ba = 1 l "  (6.33) 

*X = 0 

If we now substitute in equation (6.32) for k9' and 
kl0'  by equations {6.26) and then make the simplifi- 
cations indicated by equations (6.33), we obtain, after 
considerable algebraic rearrangement and use of 
equations (5.6) and (6.25): 

(R t, - Rao ) 3'f (s + kba ) 
R o e =  

s (s + k b .  + k a b ) 

(6.34) 

Hence, simplifying by means of the first of equations 
(3.19): 

R o e  = (R f - Roo) r ,  '. (6.35) 

This equation is equivalent in all respects to equation 
(3.18) applied to the atmospheric reservoir and thus 
leads to the Stuiver approximation. 

But we are now able to compare this simplified result 
with the alternative linear case in which isotopic frac- 
tionation and radioactive decay are not neglected, since 
these phenomena are taken fully into consideration in 
equation (6.32). It is even possible for us to examine the 
influence of non-linear features neglected in the linear 
model because of the relative ease in obtaining numeri- 
cal approximations for the n i and *hi, using equations 
(6.19) through (6.22), and then solving equation (6.29). 

On the other hand, the model just considered, even 
without approximation, does not produce realistic pre- 
dictions of the Suess Effect, because the carbon cycle 
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cannot be successfully simplified to two reservoirs. 
Therefore,  further examination of  the Stuiver approxi- 
mation will be postponed until a model has been devel- 
oped which couples the atmosphere with both the land 
biosphere and the oceans. This is done in Sections 7 
through 9, below. 

7. Atmosphere-ocean exchange model 

7.1 Relationships fo r  carbon-total 

The general formulation developed in section 6, 
above, may be applied to any pair of  reservoirs in which 
the interreservoir exchange of  carbon-total depends 
principally on the abundance of  carbon in one or both 
of  the reservoirs. In the case of  atmosphere-surface 
ocean exchange, the correct functional form of the 
dependence is known because the fluxes between reser- 
voirs respond to known laws of  gas exchange and 
chemical thermodynamics. In this section I will show 
that at the air-sea surface the perturbation equations 
(5.4) for carbon-total simplify to: 

(d/dt + kam)n a - kma ~nn = 7~ 

(d/dt + k m ~ )  n m - kamna = ~/m 

(7.1) 

where " m " ,  for the ocean surface "mixed"  layer, re- 
places the general symbol " b " .  Perturbation equations 
will subsequently be derived for rare isotopic carbon, 
based on the same principals by which equations (7.1) 
were obtained. 

The factor, 4, which I will call the "CO2 evasion fac- 
t o r "  is analogous to the perturbation factor, ~b, of  
equation (5.4). But unlike the case of  the land biosphere 
in which the mechanism of  response to a CO2 increase is 
highly uncertain and the magnitudes of  the /3 i are not 
known beforehand, the factor, 4, is a known function 
of  the chemical properties of  sea water (Bacastow, 73, 
79). As was assumed for the ~s of  the previous section, 

can be represented by a power series in the pertur- 
bation, nm, i.e.: 

n(u o ) / , \ 2 + ... (7.2) 

where the ~i are known constants. 
The flux of  CO 2 gas across the air-sea interface is a 

turbulent phenomenon in which processes within a thin 
oceanic boundary layer are believed to be rate deter- 
mining (Broecker, 78). At equilibrium, the laws of 
thermodynamics require that the partial pressures of 
CO2 gas in the two phases be equal, while, for depar- 
tures from equilibrium, kinetic considerations strongly 
suggest that the net flux is proportional to the difference 
in partial pressure (Skirrow,75, p. 135). These relations 
are equivalent to assuming that the one-way flux in each 
direction is proportional to the CO 2 pressure in the 
phase from which that flux originates. 

The rate of  CO 2 gas exchange cannot be predicted by 
any existing theory, and it is not even known with cer- 
tainty how the rate constant varies with wind, wave 
conditions, or temperature. Nevertheless it seems 
reasonable to assume that the global averages of  these 
physical properties have not varied markedly during the 
industrial era. Therefore I will postulate that the global 
average flux, Faro, from the atmosphere to the ocean 
and the return flux, Fma, are given by the simple pro- 
portionalities: 

F m = u a m P  t (7.3) 

Fm a x Pm J 
t r l a  

where  Xam and Xma denote time-independent gas trans- 
fer coefficients, and Pi (with steady state value Pio) 
denotes the average partial pressure of  CO 2 as the boun- 
dary of reservoir i where gas exchange occurs. 

For compatibility with the previously derived ex- 
change equations, let us define steady state exchange 
coeff ic ients ,  ham and kma, by the expressions: 

F~° = Ic°m ~° t 
Fo 

(7.4) 

where Fmo is the value of  Faro and Fma (which must be 
the same) at steady state. If follows that: 

F , n  = k m  No(Pa/Pao) (7.5) 

Fma = k,n a Urao(P  /Pmo) (7.6) 

7.2 Chemical relationships o f  carbonic acid and their 
influence on the air-sea exchange o f  carbon-total 

In the atmosphere since the laws of  gas mixtures 
apply, and since the atmosphere is well mixed over time 
scales of  interest, the average CO2 partial pressure, Pa, 
is proportional to the global CO2 abundance, N a, so 
that: 

P / P o  : N / N o  (7.7) 

Therefore: 

Faro = kam N . (7.8) 

For surface ocean water, even if spacial variations are 
neglected, the concentration of  carbon-total is not in 
general proportional to the partial pressure of  CO2. To 
relate the partial pressure, Pro, to the abundance, Nm, it 
is necessary to consider explicitly the chemical reactions 
which occur between dissolved CO 2 gas and its principal 
dissociation products. The chemical species in solution 
are related by the chemical reaction equations: 

CO 2 + H20 * H + + HCO a -  , (7.9) 
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HCOa- ~_ H + + CO 3 2- . (7.10) 

If CO 2 is added or removed from sea water, the amount 
in solution almost instantaneously readjusts with the 
ions of  bicarbonate, HCO3-, and carbonate, CO32-, 
to preserve constant the ratios: 

[H +] [HCO a -  ] 
K 1 = - -  - - ,  (7.11) 

[coil 
[H +] [COa 2- ] 

K 2 = (7.12) 
[HCO a -  ] 

where brackets denote concentrations in any convenient 
units, say, moles per 1000 g of  sea water; and [H +] 
stands for the concentration of  hydrogen ions. 

In addition, the partial pressure, denoted in general 
by Pc02, remains proportional  to the concentration of  
dissolved CO2 so that: 

[CO 2 ] 
g ° - ( 7 . 1 3 )  

Pco  2 

where K 0 is the gas solubility coefficient. 
The quantities Ko, K1, and K 2 are thermodynamic 

equilibrium quotients which are invariant to CO2 
exchange at the sea surface, but which vary with tem- 
perature and the total salt content (salinity) of  sea 
water. Because the equations involving these factors will 
be put to use only in connection with CO2 exchange 
over a moderate range in [H+],  it is not necessary to 
consider other dissolved inorganic species such as 
H2CO3, or ion pairs of  the dissociation products of  
H2CO3 with sea salts such as NaCO3- or MgHCO 3 +. 
To avoid specifying these and yet to allow for their influ- 
ence on the conservation of  mass, the symbol [CO2] will 
be understood to represent the concentration of  H2CO 3 
as well as CO2, and [HCO3- ] and [CO32- ] will include 
the contributions of  all ion pairs of  HCO 3- and CO32- , 
respectively. The equilibrium quotients in general vary 
with barometric pressure, but since the pressure at the 
sea surface is very nearly constant, this dependency need 
not be considered. The total concentration of  inorganic 
carbon dissolved in sea water is then the sum: 

Z C = [COz] + [HCO a -  ] + [COa z-  ]. (7.14) 

Using equations (7.11), (7.12){ and (7.13) to eliminate 
[HCO3-] and [CO32-] from equation (7.14), we obtain 
the relation: 

K KoK1 KoKIK2 ]-1  
Pco 2 = o + - -  4 ~-,C. (7.15) 

[H +] [H+I 2 

In applying this equation to reservoir models, we shall 
assume that spacial variability in chemical parameters 
can be neglected, an assumption which has not been 
tested, but appears reasonable as long as we are dealing 
only with perturbations. Let [H+]o refer to the 
hydrogen ion concentration for average preindustrial 
surface sea water. We obtain then the relationship: 

Pm Nm 
- S m  - -  ( 7 . 1 6 )  

P N /I'10 /1'lO 

where N m (with steady state value Nmo) denotes the 
amount  of  dissolved inorganic carbon in surface ocean 
water and: 

1 +K1/[H+]o +K1Kz/[H+]o 2 
~m = (7.17) 

1 +Ka/[H +] +K1K2/[H +] 2 

Since [H +] varies with EC, 4~m is a function of  Nm. 
Equation (7.16) can therefore be expanded in a Taylor 's  
Series in the neighborhood of  Nmo: 

Pm nra n / l \  2 

- 1 + ~ o - - + ~ l l k o )  +... 
Pm o Nm o 

7.18) 

Or, according to equation (7.2): 

P m rim 
- 1 + ~ - - .  

P mo Nmo 

It follows directly that: 

1 + ~ nm/Nmo 
(~m = 

1 +nm/N o 
(7.20) 

Thus 0rn has the same functional form as the general 
perturbation function, Oil, of  equation (6.15) for the 
case where the transfer rate is dependent only in the 
abundance of  carbon in the donor reservoir 03j' = 0). 

Before equations (7.15) and (7.17) are useful to evalu- 
ate the CO 2 evasion factor, ~, the hydrogen ion concen- 
tration, [H + ] must be determined as a function of  ~C. 
Several methods for doing so have been described. Bolin 
and Eriksson (59) and Broecker et al. (71) developed 
equations which essentially found the term, ~o, of  equa- 
tion (7.18) for any given fixed set of  values for all of  the 
relevant chemical parameters of  sea water including EC. 
By dropping small terms in their equations, they were 
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able to obtain expressions which could be solved directly 
for [H +] and ~o. Keeling (73b) Bacastow and Keeling 
(73) using iterative procedures without approximation, 
and Revelle and Suess (77) by graphic methods, explicit- 
ly considered the variation in ~ with ~2C, equivalent to 
determining all significant terms in the power series of 
equation (7.18). For the present discussion, it is suffi- 
cient to assume that the coefficients ~o, ~1, ~2 . . . . .  are 
known so that ~ can be evaluated as needed during a 
step-wise numerical computation of  the model equa- 
tions, or can be declared a constant if a linear approxi- 
mation is used. 

7.3 Perturbations o f  the exchange fluxes for  carbon- 
total 

If  we eliminate Pm between equations (7.6) and (7.16) 
we find that the flux of carbon-total from the surface 
ocean layer to the atmosphere is given in terms of q~m by 
the expression: 

%a = *r,, Nm" (7.21) 

The departures in the transfer rates, Faro and Fma, 
from their preindustrial steady state value, Fmo, are 
found directly from equations (7.8) and (7.21): 

whence: 

similarly: 

A F m = kam (N a - N o )  (7.22) 

F a = k  n , (7.23) 
m a m  a 

A F  =kma ( $ m N m - N m o ) .  (7.24) 

In terms of the C O  2 evasion factor, ~, (cf. equation 
(7.20)) this latter equation simplifies to: 

AFro a = kma ~ nm" (7.25) 

Substituting for AFam and AFma in the general two 
reservoir equations (5.3) with " m "  replacing " b " ,  we 
obtain the carbon-total perturbation equations (7.1). 

7.4 Relationships for  rare isotopic carbon 

For the rare isotopes the relations between C O  2 
partial pressure and total dissolved inorganic carbon 
depend on the dissociation constants of  carbonic acid, 
as in the case of  carbon-total. With due regard to iso- 
topic fractionation (cf. equation (7.16)): 

Pro "t'Nm 
(7.26) 

where (cf. equations (7.17)): 

1 + *K1/[H+]o + *K 1 *K2/[H+]o 
*¢m - (7.27) 

1 + *K 1 / [H +] + *K 1 *K2] [H +] 2 

The dissociation quotients *K I and *K 2 differ up to 
several per mil from K ! and K2 (Emrich, 70; Mook, 74) 
but the quotient: *Om, is equal to ~b m within one part in 
105 for the most extreme changes possible from indus- 
trial CO 2 uptake in the next few centuries (Keeling, 77). 
The distinction between *~b m and ~m will therefore be 
maintained in the derivation of  exchange equations only 
for analytical clarity. 

Let us define an isotopic CO2 evasion factor, *~, by 
the relation: 

I +* nm/No 
*~m = (7.28) 

1 + nm/Nmo 

For applications of  interest, *~ differs from its 
carbon-total counterpart, ~, by no more than 1 in 104, 
and thus is also numerically indistinguishable from its 
counterpart, ~, as was *~m from ~m. 

The dependence of *~b m on n m rather than on *n m 
arises because the hydrogen ion concentration, [H+ ], 
depends on carbon-total. The concentration is indepen- 
dent of isotopic composition except for a very small 
effect arising from the variable contribution of 13C to 
carbon-total. 

The transfers of rare isotopic carbon involve ad- 
ditional kinetic fractionations which modify the gas 
transfer coefficients, rtam and Xma, by factors which I 
will denote by Cram' and Ctma'. Thus: 

*Fm --- o~,~,n' X,m *P  ' (7.29) 

*Fma -- otm~ x *P . (7.30) 
m a  m 

In terms of  the corresponding fluxes of carbon-total 
(equation (7.3)): 

*Fm =or,,,,, ( * P / P ) F  m, (7.31) 

= 0 f  s *Fma rna (*Pm/Pm) Fm,, (7.32) 

Since the partial pressure and abundance of atmos- 
pheric CO2 are proportional for all isotopic species: 

* P / P  = *Na/N (7.33) 

so that: 

= O r  i *Fro °r,, ( % / N )  Fm (7.34) 

and since equation (7.8) holds: 

*Fm=Otamkam *N a (7.35) 
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where the prime o n  Otam' is dropped because the frac- 
tionation factor is the same whether defined with re- 
spect to partial pressure or carbon abundance. 

For surface ocean water, the relationships are more 
complicated. We shall make use of the factors, *0m and 
*~, to establish the correct functional dependence of 
isotopic flux on the perturbation masses, *n i and hi. 

Eliminating *Pm between equations (7.26) and (7.32): 

/ "emo\ 
(7.36) 

Let us introduce the factor arna to denote the overall 
isotopic fractionation between atmospheric CO2 and 
total dissolved inorganic carbon in surface ocean water 
at steady state. Thus, by definition 

*IV *P 
11"10 1910 

am a - ° m  a'  ( 7 . 3 7 )  
N P 

m O  m O  

Eliminating area' between the last two equations: 

*N m 1"~o ) 
- - - -  F Q 

*Fa=ama*dPm NmoP m 
(7.38) 

and hence eliminating PmoFma/(NmoPm) via equation 
(7.6): 

*Irma = °tma kma *era *Nm (7.39) 

analogous to equation (7.21) for carbon-total. 
The departures of the transfer rates, *fam and *Fma, 

from their preindustrial steady state values are obtained 
directly from equations (7.35) and (7.39): 

A % m  = ota, n k m (*N a - *No ) (7.40) 

=otto k m *n a, (7.41) 

A*Fma = etraa kma (*~m *Nm - *Arm o ) (7.42) 

= ama kin,, [*era *nm + *Nmo (*~m - 1)].(7.43) 

But from equation (7.28) it follows that: 

(*/j - 1) nm/Nmo 
*q~m -- 1 = (7.44) 

1 +llra/Nra ° 

Therefore: 

A *Fma = Otma kma [ *era *nm+R-m°(*~--l)nmt [7"45) 

l + nm/U o J 

In terms of the steady state carbon-total flux, Fmo (cf. 
equations (7.4): 

,a*F = % .  Y o {*era (*nm/Umo) + 

Rmo (*~ - 1) (nm/Nmo) 

1 +nra/Nmo 
(7.46) 

This expression corresponds to the general two reservoir 
expression (equation (6.17) except that subscript m 
replaces b, *~ replaces ~, the direct analogue of/3 b, and 
*era replaces Ore, the direct analogue of q~ba. Also/3 a' is 
zero since the evasion of CO2 from sea water is indepen- 
dent of the amount of CO 2 in the atmosphere. 

The substitutions of *~ for /j and *~b m for 0m arise 
because the general isotopic postulate, analogous to 
equation (6.9): 

*Fma = ama R m Fma (7.48) 

is not exactly fulfilled by equation (7.39). Instead, 
consistent with equations (7.21) and (7.39): 

*Fma =otmaR m (*q~m/~m)Fma. (7.49) 

Since *Om/q~ra differs very slightly from unity, as noted 
earlier, this quotient can be neglected without intro- 
ducing noticeable error into the calculations. Thus the 
general formulism of section 6 is adequate for practical 
applications. 

By subtracting *~-1 from both sides of equation 
(7.44) it can be shown that: 

(*~  - 1) 
_ _  = ( * ~ _  * % ) .  

1 + nm/Nmo (7.50) 

Hence the perturbation flux *Fma may also be written: 

A *F - 
Otma kam Nao 

Nm o 
[Rmo (*~ - *¢m) nm + *¢rn *nm] 

(7.51) 

where Fmo is replaced according to the first of equations 
(7.4). Equation (7.51) is equivalent to equation (6.49) of 
Keeling (73b) if dissolved organic carbon, allowed for in 
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his expression, is neglected, and we note that *Om is 
equivalent to the quotient, $/4~o, in his equation. 

7.5 Solving the mode l  equat ions  

In terms of  the perturbation fluxes, Faro, and Fma, the 
equations for the perturbations in N a and N m are given 
in general by equations (5.3) with " m "  replacing " b " ,  
i.e.: 

d n a / d t = A F m a - A F a m  +Ta I 

d nm/d t  &Faro -- ':~;'ma +'Ym 

(7.52) 

where 3'a and "Ym denote the combined external sources 
of  carbon-total for the two reservoirs. A source term for 
the ocean surface layer, 3'm, is included for complete- 
ness. For example, if we were to investigate the proposal 
of  Marchetti (76) to inject industrial CO2 into the 
oceans this might require a calculation in which "Ym was 
non-zero. 

In later applications of  these equations, it will prove 
convenient to introduce perturbation terms for coeffi- 
cients similar to those of  sections 5 and 6. Thus (cf. 
Keeling, 73b) equations (7.52) will now be rewritten: 

( d / d t + k a ) n  a - k  a n  m =7  a ,  

(d/dt + k4) n m - k 3 n = ~m" 

(7.53) 

Similarly for rare isotopic carbon: 

d * n J d t = A * F  - - A * F  o+R3,  a T ~ - * x n ,  

d*nm/d t  = A*Fma -- A e F a m  + R3/m ~rn - *)t n m 

(7.54) 

whereas, consistent with the notation of  equation 
(6.19): 

(d/dt = *3, + *ka) *n - *k  4 *n a m = RTa 7a + k7 "nm ' 

(d/dt + *X + *k4) *n m - *k 3 *n a = R~/m "Ym - k T '  nm" 

(7.55) 

In this last expression a virtual source coefficient k 7" has 
been introduced analogous to the use of  k 9' and kl0'  in 
equations (6.19). Matching terms after substituting for 
the perturbation fluxes according to equations (7.23), 
(7.25), (7.41) and (7.51) it follows that: 

k 3 = kam (7.56) 

k 4 = ~ kma (7.57) 

=~ k *ka am am 
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(7.58) 

*k4 = °tin a k m  a *dPm 

kT' = Otma kma R m o  (*~ - *~m). 

(7.59) 

(7.60) 

The solutions for the n i (cf. equation (5.8)) are: 

"~a (S + k4) + "~m (k4) 

s (s + k 3 + k 4 ) 

7. (ka) + ~m (s + ka) 

s (s + k 3 + k 4) 

while for rare isotopic carbon (cf. equation (6.28)): 

h = 

a 

R7~ 3'a (s + *X + *k4) + RTm 3'm (*k4) 

(s + *X) (s + *X + *k a + *k4) 

t 

- k  7 n m 
+ 

s +*X +*k a + * k  4 

n m  ~ 

R3'a 7,~ (*ka) + RTm 3'm (s + *X + *ks)  

(s + *X) (s + *X + *k a + *k4) 

I 
k 7 n m 

+ 

s + *X + *k 3 + *k 4 

(7.61) 

I.(7.62) 

The theoretical Suess Effect for the atmosphere and 
surface ocean can be derived from the n i and *hi by the 
procedures discussed in section 6. 

But since neither this model nor that of section 6 ade- 
quately portrays the perturbed carbon cycle as a whole, it 
is not worthwhile deriving these expressions. Rather, we 
shall, in the next section, take up the problem of 
modeling transport of  carbon within the oceans. Then 
in section 9 we will consider a composite model with 
four reservoirs, as the basis for computing the Suess 
Effect realistically. 

8. Vertical exchange of carbon within the oceans 

8.1 General  remarks  

The vertical transport of carbon within the oceans 
proceeds by both water motion (advection and eddy 
diffusion) and by gravitational settling of  particles, 
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principally of  biological origin (Menzel, 74; Parsons, 
75). Although the former mechanism is clearly domi- 
nant, approximately 10°70 of  the carbon arrives in deep 
water via the second mechanism (Keeling, 68; Mopper, 
79, p. 293). Both organic (reduced) carbon and biogenic 
carbonate are involved with organic carbon providing 
about two-thirds of  the total flux (Broecker, 74, p. 11). 
Up to the present time the existence of  this gravitational 
flux can have had only a minor influence globally on the 
transient adjustment of  carbon-total  between the atmos- 
phere and oceans because the flux does not respond 
appreciably to small changes in CO2 partial pressure. 
For rare isotopic carbon, however, the gravitational 
transport responds to changes in isotopic ratio in the 
ocean surface layer and therefore enters into the re- 
lationships for transient adjustment arising from CO2 
exchange at the air-sea boundary.  

Within the published literature the gravitational 
transport of  rare isotopic carbon in response to indus- 
trial CO 2 has been considered only in terms of  a two 
reservoir model of  the oceans consisting of  surface and 
deep ocean layers (Bacastow, 73; Keeling, 73b). Because 
the influence of  gravitational flux is found in these 
models to be a small effect, it does not seem worthwhile 
here to carry Out a detailed analysis for more complex 
models of  subsurface oceanic transport.  Nevertheless, 
in so far as practicable, I will develop the formalism in 
a manner which can be extended to such models in case 
this proves to be desirable in the future. 

To express water transport  and the gravitational flux 
of  carbon in the framework of  a two reservoir model, let 
Fg denote the time-dependent gravitational flux of  
carbon-total transported downward from the surface 
layer into the water immediately below, and let kmdNm 
denoted the corresponding downward flux transported 
by sea water, where kind is a time-invariant transfer 
coefficient. The latter flux is thus assumed to be pro- 
portional to the mass of  carbon-total in the ocean 
surface layer. An assumption of  proportionality is 
reasonable when the mechanism of  transport is con- 
veyance of  a chemical solution of  uniform composition 
within the surface layer. The dependence of  the gravi- 
tational flux on properties of  ocean water will not, at 
this point, be specified. It will be understood, however, 
that the bottom of  the surface layer is deep enough that 
all of  the gravitational flux originates in this layer. 

Let Fmd denote the time-dependent downward flux 
of  carbon-total at the boundary between surface and 
subsurface water by both transport mechanisms. Then: 

Fma = kma N m + F (8.1) 

where subscript, d, denotes the subsurface ( "deep" )  
ocean reservoir. In the absence of  any external sources 
of  carbon, the downward flux must be balanced by a 
return from the subsurface ocean, and since gravity 
carries carbon only downward, this flux is properly 
assumed to result solely from motion of  the sea water. 
Thus, in a two reservoir approximation of  oceanic 
transport we may write for the return flux of carbon- 
total: 

F~m = k~ , .  N d (8.2) 

where N d denotes all of  the oceanic carbon-total below 
the surface layer, and where kdm, like kind is a time- 
invariant transfer coefficient. In contrast to kind, 
however, there is little physical basis to justify constan- 
cy of  kdm during a perturbation in carbon abundance. 
The plausibility of  equation (8.2) needs, therefore, to be 
examined. 

8.2 The two reservoir vertical exchange model in 
perspective 

Let W m denote the mass of  water in the ocean surface 
layer and W d the entire mass of  water laying below that 
layer. In a two reservoir model the products, krndWm 
and kdm W d, express respectively the downward and up- 
ward flux of  water across the boundary dividing surface 
and subsurface waters. To preserve continuity of  water 
within the two layers: 

kmd W m = kdm [4/d. (8 .3 )  

This equation essentially defines the transfer coeffi- 
cient, kdm, in terms of  kind, and the ratio of  water 
volumes. 

To obtain some impression of  the shortcoming of  this 
approach, let us briefly consider an alternative model in 
which the water below a surface ocean layer having al- 
ways the same dimensions is further differentiated verti- 
cally by subdivision into any number of  layers, u, v, and 
so on, in the descending direction (Fig. 5). In the limit of  
a large number of  such layers, such a subdivided model 
approaches the vertical diffusion model of  Oeschger et 
al. (75). A small number of  reservoirs may, however, 
also be of  interest. For example, Broecker (66) divided 
the upper 750 meters of  the non-polar ocean into five 
equally spaced layers overlying a single deep ocean 
reservoir in order to portray the diffusive character of  
the main oceanic thermocline. 

SURFACE Wm 1 OCEAN: 

KmullK~m 

FIRST 1 SUBSURFACE W u LAYER: 

SECOND [ -  SUBSURFACE Wv LAYER: 
It 

Fig. 5. Multiple reservoir model of the vertical exchange of tracers in 
the oceans. Relationships are shown only for exchange of water. 
Tracers are assumed to be carried by the water in proportion to their 

concentrations in the donor reservoirs. 
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Let Nu, Nv, etc., denote the amount  of  carbon-total 
and Wu, Wv, etc., the masses of  water, in each subsur- 
face layer. These quantities are related to the deep water 
variables previously defined by: 

N a = N  u + N  o +... (8.4) 

IV a = IV  + IV ° + ... (8.5) 

where the sums are over all subsurface layers. 
Let kijWi and kjiWj denote, respectively, the down- 

ward and upward fluxes of  water between any pair of  
adjacent oceanic reservoirs i and j .  The fluxes of  water 
at the base of  the surface layer in the two reservoir and 
multiple reservoir models are the same if we assume: 

kma Wm= kmu Wm , (8.6) 

= k  w. (8.7) 

Since the surface layer has been defined to include the 
entire zone in which the gravitational flux, Fg, origi- 
nates, the former expression for Fmd, (equation (8.1)) 
holds, irrespective of  the number of  subsurface layers 
designated in the model. 

On the other hand, it is unlikely that the two-reservoir 
upward flux, Fdm, as given by equation (8.2) will be 
equal to the upward flux, Fum, in the multiple reservoir 
model since this would require that: 

-- k N u (8 .8)  

which, in view of  equation (8.7) is equivalent to: 

Nu/W ~ = Na/W a (8.9) 

i.e. the average concentration of  carbon-total would 
have to be the same in reservoir u as in the entire subsur- 
face ocean. 

The presence of  a gravitational flux requires, 
however, that the concentration of  carbon-total increase 
with depth, and therefore equation (8.9) is not a reason- 
able condition to impose on a comparison between 
models. Furthermore,  the gravitational flux is a physical 
quantity capable of  direct measurements, and therefore 
its steady-state value, Fg o, should be approximately the 
same for all models having the same surface layer 
conditions. In order that the steady-state distribution of  
carbon-total be satisfied under these circumstances, the 
upward and downward fluxes of  water at the base of the 
surface layer must generally increase in the model if the 
number of  subsurface reservoirs increases. Therefore,  
models with different numbers of  subsurface reservoirs 
cannot be perfectly matched at the lower boundary of  
the surface layer. 

Matching is likely to be still less perfect if the surface 
layers of  the models are made dissimilar. For example, 

if the surface layer is made several hundred meters deep, 
as in the two reservoir models of  Keeling (73) and 
Keeling and Bacastow (77), part of  the gravitational 
flux, Fg, is lost within that layer. Both terms of  the right 
side of  equation (8.1) then differ in magnitude from 
corresponding terms for a multiple reservoir model with 
a shallow surface layer. 

Discrepancies between global carbon cycle models 
having differently subdivided oceanic reservoirs may 
not be serious, however, if the magnitudes of  the trans- 
fer coefficients are based on the same assumed pre- 
industrial spacial distributions of  chemical concen- 
trations. In particular, the predictions of industrial CO 2 
perturbations for surface ocean water and the land bio- 
sphere, are likely to be nearly the same, because the 
industrial perturbation originates in a reservoir remote 
from subsurface ocean waters while the surface ocean 
and biospheric reservoirs of  interest are in close contact 
with the atmosphere. ~This point was investigated by 
Keeling and Bacastow (77) for the carbon-total frac- 
tions, r i by comparing the predictions of  the two reser- 
voir model with the vertical diffusion model of  Oesch- 
ger et aL (75) ignoring transport  by the gravitational 
flux. Indeed, if the only carbon-total perturbation 
under consideration is an exponentially increasing input 
of  industrial CO2 to the atmosphere, a two reservoir 
model can be constructed which gives identical 
predictions of  atmospheric, biospheric and total oceanic 
change to that of  the vertical diffusion model, after 
meeting the above requirements regarding steady-state 
conditions. Thus, provided that details of  the transport 
and storage of  carbon within the oceans are not under 
investigation, a two reservoir oceanic model is a useful 
starting point for studies of  the Suess Effect. 

8.3 Exchange f luxes  o f  carbon-total and rare isotopic 
carbon in relation to steady state 

With the above concepts in mind we shall proceed to 
develop the equations for the two-reservoir model. 

By analogy, with equations (8.1) and (8.2) the time- 
dependent isotopic fluxes are given by the expressions: 

*F,n a = kma *N m + ctmg R m F (8.10) 

*Faro = kam *N a (8.1 1) 

where the factor Otmg allows for isotopic fractionation 
associated with the gravitational flux. Approximately 
70°7o of  the carbon in this flux is derived from sea water 
bicarbonate by the photosynthesis of marine plants 
(Broecker, 74, p. 11) which preferentiallyassimilate 12C 
by the order of 20%°. The remaining 30°/0, also derived 
from sea water bicarbonate, is calcareous and aragonitic 
carbonate which is enriched in 12C only to a very small 
degree (ca. 1%° ) (Craig, 70, Kroopnick, 74, p. 213). The 
overall factor, t~rng , (see equation (10.36) and Table 2, 
below) is obtained as a weighted average of  these two 
fractionations. No isotopic fractionation is to be 
expected in the transport of  carbon by water motion 
since turbulence in this motion prevents the influence of  
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molecular scale forces which could affect one isotope 
differently than another.  

At steady state the upward and downward fluxes for 
carbon-total are equal, i.e.: 

Fa° = kma Nm° + F °  i 

J = kam Nd o 
(8.12) 

where Fdo denotes the preindustrial (steady-state) value 
of  Fred (or Fdm). For rare isotopic carbon at steady 
state: 

+"m,Rmo : %o +*x*u"o 
(8.13) 

where the term in *k provides for radiocarbon decay in 
the subsurface ocean layer, " d " .  

Consistent with equations (8.12) and (8.13), the 
magnitudes of  the flux constants and of  Fgo may be 
expressed in terms of  concentrations Nmo/W m, 
Nao/Wd, and the isotopic ratios. Solving (8.12) for Fgo, 
we find: 

3 
\ W a W m / 

(8.14) 

where the factor in parentheses is obtained by making 
use of  equation (8.3). Equation (8.14) shows that the 
gravitational flux is balanced by a net transport pro- 
portional to the product of  the water flux and the con- 
centration difference between reservoirs. 

Similarly, for rare isotopic carbon: 

°tmg Rmo Fgo = kam Wd + *X *Ndo 
Wd 

(8.15) 

where due regard is given to isotopic fractionation and 
radioactive decay. 

By eliminating Fg o between equations (8.14) and 
(8.15), we obtain a relation similar to the general ex- 
pressions (6.7): 

Otmd Rmo 

where: 

- Rd° = *X*X Rdo/kam ] 

= area Rmo/(kdm + *X) 
(8.16) 

Nm o W d 
a a = a n g + - - - - ( 1 - a n g  ) (8.17) 

W m Nuo 

is the apparent isotopic fractionation factor of  deep 
water carbon relative to surface water owing to the 
downward flux of  carbon by gravitational settling. (This 
term is the same as adm of  Keeling (73b).)Equations 
(8.16) are useful to establish 13Rdo/13Rmo or kdm in the 
manner discussed after equation (6.7). 

8.4 Perturbations of  the exchange fluxes 

Although there is as yet no direct evidence that the 
gravitational flux is perturbed by industrial CO2, this 
possibility will be considered in deriving perturbation 
equations to be prepared if such evidence is found in the 
future. Including such a provision also permits a check 
to be made on the sensitivity of  the calculations to an 
assumption of  constant flux. 

Let us therefore assume that the gravitational flux, 
including both organic particles and biogenic carbonate, 
departs from its steady state value in a manner that can 
be expressed as a function of  the amount  of  carbon- 
total in the ocean surface layer, i.e.: 

F = f(nm). (8.18) 

If Fg is expanded in a Taylor 's  series (cf. equation (4.2) 
in the neighborhood of  Fgo: 

AFg = [3g F ° nm/Nmo (8.19) 

where: 

(820) 

The coefficients, [3gi, a r e  constants derived from the 
expansion. The departure of  the total downward flux, 
Fmd, from its steady state value (cf. equation (8.1)) is: 

AF a=kmdn +AF (8.21) rrl g "  

Since Fred is a function of  n m we may write, anal- 
ogous to equation (4.9): 

AFmd :=/3 Fad nm/N o (8.22) 

where the perturbation factor,/3 m, is a function of  n m. 
If  we replace zlF.~ in equation (8.21) according to 
equation (8.19), ehminate AFmd via equations (8.22), 
and solve the resulting expression for ~m, we obtain: 

kmdNmo Eg o ~g 
J3rn - + - - - - .  (8.23) 

Fao Fad 

Next, we let 3tad denote the first term of  this expression, 
i.e.: 
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kma Nmo 
f rrl o ~- 

Go 
(8.24) 

Since fig is zero for a constant gravitational flux, flmo re- 
presents the value of tim in the absence of a perturbation 
in Fg. Also, [3too, is equal to the fraction of the total 
downward flux of carbon-total at steady state trans- 
ported by water motion. The overall perturbation fac- 
tor, tim exceeds {3too by the gravitational perturbation 
factor, fig, multiplied by the fraction of steady state 
downward flux of carbon-total carried by gravity. 

Next let us eliminate Fdo and Fgo between the first of 
equations (8.12), and equations (8.23) and (8.24) to 
arrive at the compact expression: 

fm = fmo +fig (1 - fmo)" (8.25) 

Also, by eliminating Fdo between equations (8.22) 
and (8.24) we arrive at a compact expression for the 
downward perturbation flux in terms of the ratio of tim 
and f3mo: 

AF~d = (tim [ fm o) kma nm" (8.26) 

The upward perturbation flux is a result of water 
transport alone and thus is given by the simple ex- 
pression (cf. equation (8.2)): 

AFa m = kam na. (8.27) 

The steady-state perturbation factor, flmo, is also 
useful in obtaining an alternative expression for the 
apparent fractionation factor ~ma of equation (8.17). 
Substituting in equation (8.24) the expression for Fdo 
given by the second of equations (8.12) we find with the 
aid of equation (8.3) that: 

 oWd 
fm o - (8.28) 

Nd o W 

and hence: 

ama=f,no +a g ( 1 - f m o ) .  (8.29) 

Since flmo is equal to the fraction of the total downward 
flux of carbon-total transported by water motion at 
steady-state, the factor, Ctmd , is evidently the weighted 
average of the fractionation factor, ~mg, associated 
with the downward flux of rare isotopic carbon by 
gravitational settling, and the fractionation factor for 
water transport, which is unity. 

For the rare isotopes we obtain directly from 
equations (8.10) and (8.11) the perturbation fluxes: 

a*F --k %. +o, [R (Go+ )-RmoFo], 

(8.30) 
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A*Fdm = kam *n a. (8.31) 

Substituting for R m in equation (8.30) the expression 
(cf. equation (6.14)): 

*n R N 
R - 4 (8.32) 

N N 
r n  m 

and for z~lt;'g according to equation (8.19), we obtain (cf. 
equation (6.16)): 

A'Fred = kind *n + rtl 

{ (  l+f~nrn/Nrn° ) *nm/Nm + 
Otra g E g o  o 

1 +nm/Nmo 

" (8.33) 

As shown in subsection 10.4 the expression for 
*Fred is slightly modified if the organic and biogenic 
carbon fluxes are considered separately and if their per- 
turbation by external sources (i.e. fig non-zero) produce 
changes in the fluxes which are different functions of 
the respective steady-state fluxes. 

8.5 Solving the model equations 

In terms of the perturbation fluxes, z~XFmd and ZXFdm , 
the equations for the perturbations in N m and Nd are 
given in general by equations (5.3) with " m "  replacing 
" a "  and " d "  replacing " b " ,  i.e.: 

d nm/dt = AFam - AFrnd + 7m 1 

f d nd/dt = AFma -- AFam + 78 

(8.34) 

where 3'm and 'Yd denote the combined external sources 
of carbon-total for reservoirs, m and d, respectively. 

In terms of perturbation transfer coefficients similar 
to those of previous sections (Keeling, 73b) these 
equations may be rewritten: 

(d/dt + ks) n m - k 6 n d = ~/m 

(d/dt+k 6) n d - k  5n =Td I o (8.35) 

Similarly for rare isotopic carbon (cf. equation 
(6.18)): 
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N 

d*nm/dt  = A'Faro - A * F ~ a  + RTra 7m - *)~*nm 

d*na/dt  = A * F  a - A'Faro + RTa 7d - *k*n a 

(8.36) 

or in terms of perturbation transfer and virtual source 
coefficients: 
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Making use of equations (8.3), (8.14), (8.17), (8.28) and 
(8.29) we may write from *ks: 

*ks = a,na ka,n (Nao/Nmo)  *~,nd (8.44) 

where: 

*[3m = [~mo +ame (1 - Omo) Oe][ctma' (8.45) 

(d/dt + *h + *ks) *n m - *k e *nd = RTr a 7 m + k s' n m 

(d/dt + "2~ + *k6) *n a - *k s *n m = RTa 7 a - k s' n m 

1 + *Ore nm/Nmo 
*Ore a = (8.46) 

• 1 + n m / N m o  

Equations (8.43) and (8.44) agree with equations 
(8.37) (7.23) and (7.25) of Keeling (73b p. 296) if higher order 

terms are ignored bysetting *dPmd equal to unity, and if 
Matching terms after substituting for the perturbation B. is set equal to zero on the assumption that the gravi- 
fluxes according to equations (8.22), (8.27), (8.31) and tatlonal flux, Fg, is constant (the symbol tXmd replaces 
(8.33) it follows that: Otdm of Keeling (73b)). 

~ Fo 
k s = k m a  + -  

N 
m o  

(8.38) 

o r :  

= 0,./#,,, o) k d 

where the second equality makes use of  equations (8.23) 
and (8.24), 

ke = kam (8.39) 

*k s = kma + - -  (8.40) 
1+ 

Making use of  equations (8.14), and (8.28) we may 
write alternatively for k8": 

atom Rm o kam Nao(1 -/~mo) (1 -/3e) 
k a' = (8.47) 

Arm o (1 + nm/Nrno) 

k8' =a, , . .Rmo kd,. w d 1 

Nmo W m 1 + n m / N  m 

(8.48) 

*k 6 = kdm (8.41) 

a,ng Rm o Fgo (1 -/3g) (8.42) 
k 8 ' = 

Nmo (1 + nm/Nmo ) 

Making use of equations (8.3) and (8.14) we may 
alternatively write for ks: 

k s = k a m  ( W m  \ N m o  
- -  /~g  o (8.43) 

This last equation agrees with equation (7.27) of 
Keeling (73b, p. 200), if the perturbation factor,/~g, and 
the second order term, nm/Nmo,  are set equal to zero. 

The solution for the reservoir perturbations, n i and 
*ni, and the Suess Effect are obtained in a manner 
similar to that described in section 6 and 7. 

8.6 Adap ta t ion  o f  the two  reservoir m o d e l  to por t ray  
cont inuous  vertical d i f fus ion  

In their investigation of industrial C O  2 uptake by the 
oceans and land biota, Oeschger et al. (75) approached 
the problem of  modeling the ocean beneath the surface 
mixed layer using a "box diffusion" model in which the 
vertical distribution of carbon-14 aids in establishing the 
response of the oceans to the atmospheric CO2 input. 
The input of  carbon-14 to the oceans is known from 
tree-ring studies to have been more or less constant for 
thousands of  years, and therefore its distribution is 
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likely to have reflected an oceanic steady state prior to 
recent artificial creation of  carbon-14 from nuclear 
bombs. Since an oceanic steady-state reflects a wide 
range of  characteristic response times, this distribution 
in principal should be a valuable aid in devising a model 
valid for predictions of  industrial CO2 uptake by the 
oceans. But because few observations of  oceanic 14C 
were made prior to introduction of  bomb 14C into the 
oceans, the steady-state distribution is well established 
only in the deep waters of  the oceans where bomb 14C 
has still not penetrated appreciably. In the surface and 
intermediate waters above a depth of  one thousand 
meters, where the oceanic response to industrial CO2 is 
important,  the addition of  bomb 14C has made difficult 
or impossible the determination of  the preindustrial 14C 
distribution needed for modeling industrial CO2. 

The authors have avoided the difficult problem of  
trying to correct the observational data for bomb 14C by 
constraining their model to fit only the most obvious 
undisturbed features of  the 14C distribution: 14C/C 
ratio in surface water, measured in the early 1950s 
before bomb 14C had appreciablyaffected the oceans, 
and the 14C/C ratio below 1000 meters. Furthermore,  
only the 14C/C ratio at 4000 meters depth and the 
average ratio below 1000 meters were considered quanti- 
tatively. Regional differences were disregarded by 
taking areal weighted averages of  the main ocean 
basins. The authors forced a constant eddy diffusion 
coefficient, K, to predict the observed 14C/C ratios at 
the surface and 4000 meters. The value of  K found in 
this way, was of  the order of  4000 m s yr °1 . This value led 
to a predicted average 14C/C ratio below 1000 meters in 
satisfactory agreement with observations, thus 
confirming that an assumption of  constancy for K was 
not unreasonable. 

As noted by Veronis (75) and others, salinity and 
temperature data indicate that it is unlikely that the 
ocean circulation obeys a constant vertical diffusive 
principle, and, therefore, the box diffusion model, like 
the two reservoir model of  the carbon cycle, is a highly 
simplified parameterization of  the transfer and storage 
of  oceanic carbon. It too must be justified on the 
grounds, that it accords with data for time-dependent 
phenomena.  

With respect to such phenomena the authors have 
noted that the box diffusion model satisfactorily 
predicts both the uptake of  " b o m b "  carbon-14 
produced since A.D. 1954 and the atmospheric 14C 
Suess Effect resulting from industrial CO2 production 
before A.D. 1954. The prediction of  the latter is also 
compatible with the expected airborne fraction of  
carbon-total.  Bomb carbon-14 as a tracer has the 
advantage that it was injected into the atmosphere over 
a short time period and like a single spike allows the free 
response of  the oceans to be revealed. Although the 
source to the atmosphere is not so well established as 
that for industrial CO2, the amount  in the atmosphere 
as a function of  time is known quite precisely. Thus the 
uptake by the oceans can be estimated from a 
knowledge of  the rate coefficient, kam, and the distri- 
bution of  14C in surface water as a function of  time. But 
neither kam nor the 14C distribution in surface water are 
well enough known to calculate the uptake of  14C by the 

oceans very precisely. Furthermore,  the observing 
period since the end of  major  weapons testing is too 
short to yield information on characteristic response 
times longer than a few years. Thus bomb carbon-14 as 
yet is of  limited value in evaluating models to be used 
for predictions of  industrial CO2 uptake. Additional 
time dependent tracer data, such as tritium from bomb 
tests, have been investigated to test both models, and 
more complicated models as well, but neither the 
distributions nor the source strengths of  these tracers 
are yet well enough known to provide a convincing 
demonstration in favor of  any particular model. 

With respect to the atmospheric 14C Suess Effect, it 
turns out that the box diffusion model for different 
intensities of  vertical diffusion predicts a relationship to 
the airborne fraction which is indistinguishable from 
that for a linear two reservoir ocean model when the 
assumed depth of  the surface layer is varied (Keeling, 
77, pp. 88-91). A finding that the box diffusion model 
successfully predicts both of  these effects is therefore 
not a compelling argument for preferring that model 
over the two reservoir model with adjustable surface 
layer. A more convincing argument is that the box 
diffusion model predicts the Suess Effect, given the 
steady state distribution of  14C, whereas the two reser- 
voir model typically uses the Suess Effect to establish 
the effective depth of  the surface layer. Although it 
appears reasonable to choose the surface layer depth 
near the middle of  the main thermocline, say between 
200 and 600 m depth (Bacastow, 79), the physical basis 
for this choice is less secure than the choice of  para- 
meters of  the box diffusion model. But even this ad- 
vantage of  the box diffusion model is weakened because 
the diffusion coefficient, K, was obtained from a fit of  
the 14C/C distribution at only two depths and therefore 
is also insecurely established. In balance, the box dif- 
fusion model appears to be physically more realistic 
than the two reservoir model but not strikingly so. 

Let us now derive expressions for the box diffusion 
model corresponding to the detailed expressions devel- 
oped above in subsection 8.3. This model was solved 
approximately by Oeschger et al. (75) by subdividing the 
subsurface ocean into forty-six reservoirs, where each 
adjacent pair is governed by exchange equations similar 
to the multiple reservoir model discussed in subsection 
8.2. The authors ignored the gravitational flux, assum- 
ing for simplicity that the steady state distribution of  
carbon-total was constant with depth. Let us now con- 
sider how the gravitational flux might be included in the 
formulation. This flux is not necessarily uniform with 
depth, and we may therefore appropriately assume that 
it varies as a function of  the vertical coordinate, z, or 
from reservoir to reservoir if the vertical column is 
subdivided. 

Let J(z, t) denote the (possibly time dependent) rate 
of  regeneration of  inorganic carbon-total particulate 
organic carbon and biogenic carbonate per unit volume 
in subsurface water at depth z. Then the total gravi- 
tational flux, originating in surface water, is given by 
the integral: 

hs 
F ( t ) =  ~ hfm J(z' t) A(z) dz (8.49) 
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where hm and hs denote the average depth of  the surface 
layer and ocean bottom, respectively, and A ( z )  denotes 
the area at depth, z. Thus for layers, u, v, .... o f  the 
multiple layer model, there appears corresponding 
sources of  carbon-total,  F u, Fv, where, for say layer v: 

F v = A v ~ ( h  u - hv) (8.50) 

where Jr(z, t) denotes the average o f  J(z, t) at time t over 
layer v, h i denotes the depth of  the top (i = u) and 
bot tom (i = v) of  the layer, and A i (i = v) denotes its 
horizontal area. 

Although the introduction of  a vertically varying 
graviational flux is in principal straightforward, so few 
data exist to establish it that only very approximate 
formulations have been attempted (BjOrkstr0m, 79) and 
only for carbon-total,  not for isotopic distributions. It 
lies beyond the scope of  this discussion to explore the 
implications of  industrial CO2 to the detailed distri- 
bution of  isotopes in the subsurface oceans, and there- 
fore, I will limit the discussion to a consideration of  
average differences in isotopic ratios between surface 
and deep water, similar to the approach of  Oeschger et  
aL (75) to establish the diffusion coefficient, K. This 
approach permits use of  a simplified analytic solution of  
the box diffusion model for which present data, and the 
assumption of  a constant diffusion coefficient, are more 
or less adequate to cope with the gravitational flux term. 

The box diffusion model is equivalent to increasing 
the number of  layers of  a multiple reservoir model with- 
out limit. The rate of  change in concentration as a func- 
tion of  depth of  carbon-total below the surface layer of  
depth, hm, is given by Fick's diffusion equation with an 
added local source term, J(z,  t): 

Oq(z, t) a=q(z,  t) 
- K  

0t az 2 
+ J(z, t) (8.51) 

where q(z, t) denotes the concentration of  carbon-total 
at depth, z, and time, t, and where K, the eddy dif- 
fusion coefficient, is assumed to be constant. A similar 
equation applies to rare isotopic carbon, with a radio- 
active decay *hq(z,  t) added in the case of  carbon-14. 

For steady-state distributions of  chemical tracers this 
equation has been solved where the rate of  regeneration, 
J, is assumed to be constant or to vary exponentially 
with depth (Wyrtki, 62; Munk, 77; Craig, 69). Equation 
(8.51) has not been employed to predict time variable 
tracer concentrations. 

Without a gravitational flux, the time dependent 
solution of  equation (8.51) for carbon-total and carbon- 
14 was derived by Oeschger et  aL (75) for an exponen- 
tially rising industrial CO2 source. In further simplifi- 
cation they neglected radioactive decay because the time 
spans of  interest were short compared to radioactive 

decay time, *k-l, and they neglected isotopic fraction- 
ation, since transport was assumed to be only by water 
motion. 

For purposes of  comparing surface and deep water 
averages, we need consider exchange only at the base of  
the surface layer, but we shall want to include consider- 
ation of  gravitational flux and isotopic fractionation. 
Nevertheless, let us initially neglect the gravitational 
flux to establish the basic relationships between the 
models with only isotopic fractionation as an added 
complication. For the comparison and surface and deep 
water, the two reservoir oceanic model will be shown to 
provide most of  the formulism needed to solve the box 
diffusion model, for an exponential CO2 source. 

With Fg = 0 the net flux o f  carbon-total from a 
homogeneous surface ocean layer to a diffusive layer 
immediately below is given by: 

~q 

z = h  m 

(8.52) 

which leads to the result (Oeschger, 75): 

Z~md -- ~ m  

n 
m o  

eU' u (h,, x/-UT ) 

hm 

(8.53) 

where, in accordance with equation (2.19) the 
perturbation, rim, in the surface layer is assumed to in- 
crease exponentially, i.e.: 

n m = nra o e lat (8.54) 

throughout the time period of  interest. Similarly, below 
the surface layer, if an exponential increase is again 
assumed: 

q = qo (z)  e tat. (8.55) 

For the two reservoir model, the same equation (8.54) 
applies for surface water while for deep water: 

n a = nao e lat. (8.56) 

Equations (8.55) and (8.56) are not serious further con- 
straints over assuming equation (8.54) to hold, since, as 
shown by Bacastow and Keeling (79) all the reservoirs of  
a linearly coupled system increase nearly exponentially 
within about one e-fold time of  the commencement of  
an exponentially increasing external source. 

To obtain an expression for the two reservoir model 
corresponding to equation (8.53) we eliminate nm and 
n d in the second of  equations (8.35) by means of  the 



266 Charles D. Keeling 

exponential functions (8.54) and (8.56). With 3~d equal 
to zero (since industrial CO2 is the only external source 
considered) this leads to: 

k 5 nmo e lat 
n d = (8.57) 

P + k  6 

Substituting the first derivative of  this expression for n d 
in the second of  equations (8.34) (again with "rd equal to 
zero): 

nm o e ~t  p k s  
a F  ,, - = ( 8 . 5 8 )  

p + k  e 

Equations (8.53) and (8.58) indicate that the two 
models will predict the same net perturbation in the flux 
of  carbon-total from surface to deep ocean water, if the 
perturbation transfer coefficients k5 and k6 are so 
related to the diffusion coefficient K that both 
equations are satisfied for a given value of  the e-fold 
time #-t, i.e.: 

uk 5 X / ~  tanh (h d 

;~'. + k 6 h m 

(8.59) 

where the depth of  the surface layer, and thus the per- 
turbation nm, are assumed to be the same for both 
models. 

For the two reservoir model (cf. equations (8.38) and 
(8.39)): 

approximately 4 times the 75 m chosen by Oeschger et 
al. (75) as the actual thickness of  the homogeneous 
surface layer. This approach indeed leads to exactly the 
same prediction of  the airborne fraction and atmos- 
pheric 14C Suess Effect with both models for a certain 
unique value of  the two reservoir model surface layer 
thickness, h m. But increasing h m is not the most direct 
way to adapt the two reservoir model to the diffusive 
case, and it cannot give exact correspondence between 
models for the oceanic Suess Effect even at the air-sea 
boundary.  

An alternative approach is to regard k 5 and k6 for the 
two reservoir model as perturbation coefficients and to 
disregard the steady state equations in their evaluation. 
For example, the reciprocal, k5-1 , may be postulated to 
represent tile characteristic time for a surface contami- 
nant to be diffused into the bulk of  the ocean. Since 
diffusion into the surface layer of  a contaminant in- 
jected into deep water is not under investigation, k6 can 
be set equal to zero. As a further basis for setting k 6 
equal to zero, the steady state equations for 14C indicate 
that kdrn, tO which k6 corresponds in the two reservoir 
model, is of  the order of  1/(1000 yr) or less, and thus 
negligible in comparison to # for typical e-fold times of  
industrial CO2 of  20 to 50 yr (see section 11 below). 

The two reservoir and box diffusion models lead to 
the same predictions for a given choice of  the e-fold 
time, #, if: 

k 5 
h 

r n  (8.62) 

k 6 =0  

u k  5 I d (flm/f~mo) kind 

/ a + k  6 la + kdm 

(8.60) 

Eliminating kmd via steady state equation (8.3): 

Uk~ U (~,,,1~.,o) ka,,,(WdlW.,) 

i a 4- k 6 la + kd m 

(8.61) 

For realistic values of  ~, and with tim equal to flmo 
(i.e. assuming a constant gravitational flux), kdm, to be 
compatible with equations (8.59) and (8.61), is found to 
be approximately 4 times larger than predicted by the 
first equality of  equation (8.16) using the steady state 
carbon-14 distribution from which K was derived by 
Oeschger et al. (75). The same result holds if the gravi- 
tational flux is ignored, since then both tim and flrno are 
equal to unity. 

As noted by Keeling and Balastow (77) this inconsist- 
ency can be remedied by increasing the assumed sur- 
face layer depth, h m, for the two reservoir model to 

The factor tanh (hd/x / l z lK)  is indistinguishable from 
unity for #-t less than several hundred years and hence 
has been dropped from the expression for k 5. 

Using equation (8.62), the vertical diffusion model is 
solved only at the base of  the surface layer. But since the 
net flux across this boundary is fully prescribed, the 
integrated build-up of  carbon-total in the subsurface 
ocean as a whole is also exactly prescribed. This is 
obviously as much as can be expected in adapting the 
two reservoir model to a computation of  vertical 
diffusion. 

Let us next consider the perturbation equations for 
rare isotopic carbon with the gravitational flux still ne- 
glected. In this case the perturbation coefficients, k 5 
and k6, for the two reservoir model are the same for 
carbon-total and rare isotopic carbon. Since the radio- 
active decay terms in equations (8.36) can be shown to 
contribute negligibly, the differential equations (8.35) 
and (8.37) for carbon-total and rare isotopic carbon 
reduce to expressions of  identical form. Hence solutions 
compatible with the box diffusion model for rare iso- 
topic abundances, *n i, are obtained by evaluating *ks 
and *k 6 by the expressions: 
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* k s -  hm " (8.63) 

*k 6 = 0 

Let us now consider the case where a gravitational 
flux is included in both models. The correspondence 
between models cannot be made perfect, and in the 
absence of  a direct simultaneous solution of  the dif- 
fusion equation (8.51) for both carbon-total and rare 
isotopic carbon, we are obliged to seek some approxi- 
mate relation connecting the steady state coefficients, 
kind and kdm, which appear in equations (8.38) through 
(8.41) with the perturbation coefficients, k5 and k6. 
There is no difficulty in again setting/(6 and *k 6 equal to 
zero since they are still both associated with a nearly 
negligible return perturbation flux of  tracer, for e-fold 
times, p.-I of  interest. With respect to k5 and *ks it 
would appear reasonable to assume that the steady state 
gravitational flux, Fgo, is held constant (see subsection 
8.2). Thus, the models ought to give nearly the same 
predictions for rare isotopic carbon if we assume that: 

k5 - + - - ,  (8.64) 

h m Nmo 

- . . t  

*ks h m Nmo 1 + nm/Nmo 

(8.65) 

Although these equations cannot yield entirely correct 
solutions to the diffusion equation, they have been 
tested by comparing predictions based on them with 
predictions of  a two reservoir model with an enlarged 
surface layer (Keeling, 77). The two models produce 
almost the same change in predicted atmospheric Suess 
Effect when a steady state gravitational flux of  the same 
magnitude is alternately included and excluded from 
both calculations. 

As it happens, since the gravitational flux cannot be 
established reliably by direct measurements, probably 
the best estimates of  Fg o are those derived by con- 
sidering the difference in concentration of  carbon-total 
between surface and deep water in which the rate of 
turn-over of  the deep water is estimated by carbon-14 
data (Broecker, 74). 

In other words, the two reservoir model is probably at 
present the best model available to calculate the gravi- 
tational flux. The box diffusion model with the gravi- 
tational flux included is then solved via equations (8.64) 
and (8.65), with the value of  Fg o established from a 

separate two reservoir model calculation via equation 
(8.14). The value of  kdm in the latter equation is made 
consistent with the steady state carbon-14 distribution 
assuming no gravitational flux by solving the first 
equality of  equation (8.16) for kdm with 14Rmo/14Rdo, 
evaluated as described in section 11 (see equation 11.11) 
and with Ctmd setequal  to unity. Since amd is found to 
be very close to unity when the gravitational flux is 
included, this approach cannot lead to significant 
distortion of  the evaluation of  kdm. 

Similarly, the neglect of  gravitation flux by Oeschger 
et al. (75) probably has not contributed significant error 
in the determination of  K. In principal the diffusion 
equation should have been separately solved for 14C and 
C with the gravitational flux included, as Craig (69, 71) 
has forcibly pointed out. But in practice the use of  
14C/C ratios (especially ratios normalized to the 
variation in 13C/C) appear very nearly to cancel out the 
influence of  local sources of  carbon in the tracer in the 
vertical column (Lal, 62). This problem deserves 
additional study which cannot be pursued here. 

9. Four reservoir model 

The simplest geochemical model which describes the 
main features of  the industrial CO2 perturbation of  the 
carbon cycle consists of  a combination of  the four reser- 
voirs already considered pairwise. Such a model is 
depicted in Fig. 6. Its adequacy is discussed by Oeschger 
et al. (75) and Keeling and Bacastow (77). As these 
authors point out, a single undifferentiated land bio- 
sphere is a reasonable first approximation to the global 
biospheric model. Very long cycled biospheric carbon, 
excluded in the single reservoir approximation, interacts 
only weakly with the industrial CO 2 perturbation while 
the short cycled carbon, also excluded, is in too small 
abundance to matter. The oceans, because of  layering 
of  warm water over cold, cannot be effectively modeled 
by a single undifferentiated ocean, however. A single 
reservoir model produces unrealistic responses to per- 
turbations occurring in the range from 10 to 100 yr, the 
range of  greatest interest to studies of  industrial CO2. 

Nevertheless, as discussed above in section 8, a simple 
extension of  the one reservoir ocean model appears to 
produce a realistic response to perturbations over a wide 
range of  characteristic times. In this extended model the 
ocean beneath a homogeneously mixed surface layer is 
assumed to mix vertically by eddy diffusion. Even when 
the diffusion coefficient is assumed to be constant the 
response characteristics appear to be realistic. Further- 
more, as Keeling and Bacastow (77) demonstrate, if the 
subsurface ocean is assumed to be randomly mixed, for 
example, by assuming two homogeneous reservoirs 
which exchange water, the response to perturbations in 
the range from 10 to 100 yr is similar to the diffusive 
model, provided that the ocean is divided well within the 
transition zone between the relatively homogenous sur- 
face an d deep layers. 

Obviously, more complex models both of  the ocean 
and of  land biosphere will be helpful in refining our 
understanding of  the Suess Effect. But we have already 
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encountered considerable complexity with respect to 
isotopic relationships with the biosphere and oceans 
simplified to single and paired reservoirs, respectively, 
and it therefore seems preferable to limit the present dis- 
cussion to the coupling of  these three reservoirs to the 
atmosphere, in other words to restrict further discussion 
to what is implied by the rare isotopic and carbon-total 
equations already developed in sections 5 to 8, above. 

Such a four reservoir perturbation model is readily 
constructed using the flux expressions already derived. 
The only new consideration is that,  in contrast to the 
previously considered models, the atmosphere and 
ocean surface layer each exchange with two reservoirs. 
For carbon-total this is according to the general 
equations (cf. Fig. 6)" 

d n j / d t  = AF i j  + AF~ j  - AF j i  - AF jk  + ~(~ (9.1) 

)'o~ N a ] 

~ N a 

Fig. 6. Four-reservoir model of the exchange of carbon-total between 
the atmosphere (carbon abundance, Nu), land biosphere (Nh) surface 
ocean(Nm) and deep ocean (Nd). External sources of carbon-total, 3'i, 
are assumed to exist for all reservoirs. The change in rates of 
exchange, AFu, as the external sources operate, are as described in 

sections 6 through 8. 

where reservoirs i and k exchange carbon with reservoir 
j .  A similar equation applies to rare isotopic carbon. In 
terms of  the perturbation exchange coefficients, kl ... 
k 6, we arrive, for carbon-total,  at the set of  differential 
equations: 

(d/dt + k l )  n b - k 2 n  a = ~ b  1 

- k i n  b + (d/dt + k z +/ca) n a - k 4 nra = ~/a I,, (9.2) 

- k  a n a + (d/dt + k 4 + k s )  n m - k 6 n a = ~lm i 

- k  5 n m + (d/dt + k6) n a = 7a 

equations are made linear by requiring all the coeffi- 
cients, k i, *ki, k i '  to be constants, additional numerical 
methods, for example, involving the computation of  the 
eigenvectors of  the matrix of  coefficients, kij (Bacastow, 
unpublished) are available. These linear methods, how- 
ever, offer little advantage over more direct numerical 
methods applied directly to the original equations. 

The analytic solutions for n i and *ni are greatly sim- 
plified for the case where the equations are linear, and 
in addition, the only external sources of  carbon-total are 
exponential functions of  time, i.e. (cf. equation (2.16)): 

3'i = ~'io e/Jr (9.4) 

For rare isotopic carbon, the corresponding equations are: 

- -  * k  1 * n  b 

f t 

(d /d t+*~,+ * k l )  *n b - *k  2 *n a =R~b 7 b +k  9 n b - k l o  n a 

+ (d /d t+* ;~+*k  z + * k  a ) * n  a *k 4 * n  ' ' + ' - m = R ' y a ' Y a -  k9 rib + k l O  na k7 nm 

- * k  a *n a + (d /d t  + *X + *k4 + *ks )  *n m - *k  s *nd = RTm 3' m + ( - k T '  + ks '  )n m 

S 

- *k  5 *n m + (d/dt + *;k + *k6)  *n a = RTa  7a - ka nra 

• (9.3) 

Since in general these differential equations are non- 
linear, approximate numerical methods are required to 
solve for the perturbations, n i and *n i. Several methods 
of  solution exist, for example, as described by Bacastow 
and Keeling (73), and by Oeschger et  al. (75). If the 

and for rare isotopic carbon, the isotopic ratios R.ri are 
constants so that the isotopic sources, "3'i, are also expo- 
nential functions of  time, i.e.: 

"3'~ = R3, ~ ~to e/~t. (9.5) 
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A solution using these exponential functions,  may be 
obtained using the Laplace transformed counterparts o f  
the governing differential equations.  From equations 
(9.2) we obtain in matrix notation: 

+ k 1 - k  2 0 

- k  1 s + k 2 + k 3 

0 - k  3 

- k  4 

s + k  4 + k  5 

_ 

0 

0 0 - k  5 s + k 6 

- k  e 

n b 

n a 

I 

{ n  

rl d J 

7 ~b 

! 
7a 

i 

{ 

(9.6) 

which I will abbreviate by: 

[ k j  [hil = ['~1. (9.7) 

Similarly the Laplace transformed equations o f  equations (9.3) are: 

B 

s + *X + *k 1 - * k  2 0 0 

- * k  I s + *X + *k  2 + * k  3 - * k  4 0 

0 - * k  3 s + * k + * k  4 + * k  5 - * k  6 

0 0 - * k  5 s + *X + *k 6 

*fib 

~h 
172 

(9.8) 
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]6 9 - k l o  0 0 

t ¢ r 

- k  9 k lo  k 7 0 

I t 
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which I will abbreviate by: 

[*go] [*~,]  = [*qi l  - [ k , / ]  [~i l .  (9 .9 )  

To avoid the computation of  absolute isotopic abun- 
dances, which are less well known than isotopic ratios 
relative to a standard ratio, it is convenient to divide this 
last equation by the isotopic ratio of  atmospheric CO2, 
Rao. Thus: 

[*k o] [*hJgaol  = [ * ~ i / R a o ]  - [ki/ /R o I [hi] 

(9.10) 

The analytic solutions of  equations (9.7) and (9.10) 
with "rb, Vm and "rd equal to zero (e.g. when industrial 
CO2 is the only external source) are given by Keeling 
and Bacastow (73b). These solutions permit, with cer- 
tain restrictions, an arbitrary functional form of  Va, 
with respect to time; provided that a convolution inte- 
gral is evaluated. The method may be extended to pro- 
vide solutions where all o f  the Vi are arbitrary functions 
of  time, but in this general case considerable numerical 
computation is required. 

If the sources "Yi are exponential functions of  time, a 
direct analytic solution is possible. Although this latter 
approach uses a minimum amount of  computation,  a 
still simpler approach, if a high speed computer is avail- 
able, is to solve equations (9.6) and (9.8) directly. 
Indeed these may be first combined into the single 
matrix equation: 

o]i 1 
(9.11) 

which I will abbreviate by: 

kn = ~ (9.12) 

The direct solution for n is obtained as: 

h - k  - 1  7 (9.13) 
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n i = n i o  e lit ,  (9.14) 

= *n. e lit (9.15) *ni zo 

as was the case for the two reservoir model discussed in 
section 2 (equation (2.19) and (2.30)). 

Corresponding to these equations, there exists a 
matrix solution of  equations (9.13) in terms of  the per- 
turbation coefficients, nio, and *nio, i.e.: 

n o = k~'- 1 _ To (9.16) 

where no and V._o denote the column vectors: 

n o = [nio], [*nio /Rao]  (9.17) 

7_o = [Viol, [ * r i o / R a o l ,  (9.18) 

Equations (9.16) thus permits a complete solution for 
the n i and *n i by little more than a single matrix 
inversion. 

If industrial CO2 is the only external source, i.e. if: 

V a = Vf ° e l i t  1 
J v i = O ,  i ~ a  

(9.19) 

the solution can be written in the more specific form: 

k - 1  no = g 7fo (9.20) 

where g denotes the column vector: 

g=  [ 0 , 1 , 0 , 0 , 0 , R r 0 , 0  ] (9.21) 

where k -I is the inversion of  k, obtained numerically 
(Bronson, 69, p. 60). 

Since the external sources are assumed to be expo- 
nential according to equations (9.4) and (9.5), the 
solutions of  equations (9.2) and (9.3) for the n i and *n i 
take the form: 

As in the more general linear case (equation (9.5)), the 
rare isotopic ratio of  industrial CO2, Rf, is assumed to 
be constant. 

The reservoir fractions needed to compute the Suess 
Effect are related to the nio, and *nio (cf. equations 
(1.9), (1.14), (2.18) and (2.23)) by: 



The Suess Effect 271 

r i -- _ _  

n i o  I d 

7fo 

(9.22) 

* n i o  Id 

* r  i - 

Rio 7fo 
(9.23) 

Since these fractions differ from the nio and *nio only 
by constant factors, it follows that: 

r =k -1  g o  (9.24) 

where r denotes the column vector: 

r = [ri],  [ * r i R i o / R a o ]  (9.25) 

Thus a matrix solution for the factors, ri and *r i 
Rio/Rao, can be obtained directly. 

After the solution for r is found, the Suess Effect is 
computed (cf. equations (1.22), (2.37)) by: 

Q (*r i - ri) 
s, - (9.26) 

Nio (1 + riQ ) 

where (cf. equation (2.18)): 

Q = (Tfo / la) e tat (9.27) 

and where the *ri are obtained from the 5th to 8th 
elements of  vector r by multiplication by Rao/Rio. 

10. Carbonate dissolution within the oceans 

10.1 General remarks  

The predicted relationships between rare isotopic car- 
bon and carbon-total in the carbon cycle are altered 
considerably if appreciable amounts of  sedimentary car- 
bon on the sea floor are assumed to dissolve and fur- 
nish additional carbonate ion to the sea water. 

In deep ocean water, marine carbonates are likely to 
dissolve as soon as industrial CO 2 reaches these waters 
(Peng, 78). Even under normal conditions, most solid 
carbonate particles entering the oceans from rivers, and 
most biogenic carbonate shell material produced in 
surface water, dissolve on reaching the deeper ocean 
basins. The carbonate ions produced by dissolution are 
returned to shallower waters above by the deep water 
circulation. During the industrial CO2 era, an acceler- 
ated dissolution is likely to occur and perturb this other- 
wise nearly steady-state condition. This tendency will 
have little effect on the oceanic uptake of  industrial CO2 

for several" hundred years, however, because of  the 
slowness with which deep water exchanges with the 
ocean surface. 

If dissolution of  shallow marine carbonates should 
also occur, the oceanic uptake of  industrial CO2 from 
the air would increase considerably even in early stages 
of  the industrial era because of  the proximity of  the 
overlying waters to the air-sea boundary. Arguing 
against this possibility is the generally high degree of  
supersaturation of  surface water with respect to carbon- 
ates (Revelle, 57a; Edmond,  70; Ingle, 73). Pure calcite 
will probably not dissolve appreciably in near-surface 
sea water even at the time of  highest atmospheric CO2 
when the pH of  the water might drop as low as 7.6 
(Bacastow, 73 and unpublished). The more soluble 
carbonate mineral, aragonite, is abundant in shallow 
tropical seas, and some aragonite is likely to dissolve 
during the next century. It is doubtful,  however, 
whether there is enough of  this mineral available to 
reduce atmospheric CO2 levels more than a few percent. 

Perhaps the most likely shallow water carbonates to 
dissolve under the influence of  industrail CO 2 are depo- 
sits of  high magnesian calcite, which according to Wol- 
last and Reinhard-Derie (77), may attach to calcitic sedi- 
ments. Such deposits, which essentially consist of a solid 
solution of  MgCO 3, may be sufficiently soluble to be 
already dissolving as a result of  industrial CO2 entering 
shallow water. Thus an analysis of  the processes affect- 
ing the Suess Effect is not complete until the influence 
of  carbonate dissolution is considered. 

The problem of  predicting carbonate dissolution 
from industrial CO2 is complicated by uncertainties as 
to the amount of  soluble carbonates at shallow depths 
and by kinetic factors involving the rate at which solid 
carbonates dissolve when the acidity of  sea water 
changes (Berner, 74, 76). As a first step in solving the 
general problem, I will disregard the possible exhaustion 
of  material and the time delays attending dissolution by 
assuming that the carbonate ion in sea water remains in 
equilibrium with an inexhaustible supply of  solid 
carbonate. Calculations based on this assumption will 
establish upper limits for the magnitude of  the carbon- 
ate effect for given values of  other model parameters. 

It is not immediately evident how to incorporate 
carbonate dissolution into the formulism developed in 
previous sections, because dissolution not only provides 
sources of  carbonate to the oceanic reservoirs where it 
dissolves, but afterwards this carbonate is redistributed 
by water motion between oceanic reservoirs. The 
transport relationships of  carbonate ion are made com- 
plicated by the chemical dependence of dissolved 
carbonate on the concentrations of  bicarbonate ion and 
carbonic acid (see equations (7.9) and (7.10)) and other 
weak acids in sea water such as boric acid (Edmond, 
70). There is a way around this difficulty, however, 
because carbonate dissolution releases calcium and 
magnesium ions which can be traced as they are 
transported from one region to another. The degree to 
which calcium and magnesium is complexed with 
carbonate and bicarbonate ion (Whitfield, 75) is not 
important in this regard because only the total amount 
of  dissolved calcium and magnesium is relevant in 
keeping track of  the dissolved carbonate. 
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10.2 Chemical relationships o f  carbonate dissolution 
and their influence on the gravitational f lux  o f  
carbon-total 

To explain the use of calcium as a tracer, let us first 
disregard the influence of dissolved magnesium and 
postulate that equilibrium is maintained between pure 
solid calcium carbonate and sea water by the chemical 
reaction: 

CaCO 3 Ca 2+ + CO - (10.1) 

At equilibrium: 

[Ca2+] CO]- ] = K p  (10.2) 

where brackets denote concentrations. The solubility 
product, Ksp, as in the case of the dissociation con- 
stants, K 1 and/(2,  is invariant to reaction (10.1) but 
varies with temperature, salinity and hydrostatic 
pressure. 

To apply this equation to the two reservoir model, let 
Ci denote the amount of dissolved calcium (Ca 2 + and 
its ion complexes) in oceanic reservoir i in units of moles 
multiplied by the molecular weight of carbon. Let ACi 
denote perturbations from an assumed initial steady 
state value Cio, i.e.: 

= q - qo.  (10.3) 

Let 7/i denote the rate of dissolution of solid calcium 
carbonate, CaCO3, in reservoir i in the same units as 
used for the carbon-total of industrial CO2 source, 7f. 
Then: 

an,/dt = aACildt = n i (10.4) 

where subscript " o "  denotes a preindustrial steady 
state. Next, we relate this equation to the equilibrium of 
the other dissolved species of carbon-total, namely 
CO2, and HCO3. The product of equations (7.11), 
(7.12), and (7.13) is: 

[H +] 2 2-  [coa ] 
KoK1K 2 = (10.6) 

Pco 2 

whence: 

[Ca2+] _ ( P c ° 2 ) o  [H+] 2 

[Ca2+] o eco 2 [H+] z° 
(10.7) 

Thus, for the oceanic surface layer: 

Cm Pmo [H+]2 

Cmo Pm [H+12o 

or, in view of equation (7.16): 

(10.8) 

C Nm o [H +] 2 

Cm o Cm Nm [H+] 20 
(10.9) 

Since [H + ] and 4)m are functions of Nm, we can expand 
in a Taylor's series (cf. equation (4.8)) in the neighbor- 
hood of Nmo: 

for the changes in ]Vi and Ci owing solely to dissolution. 
This simple relation results because the amounts of dis- 
solved calcium and carbonate are defined in the same 
mass units (g of C). Because the carbonate equilibrium 
equation (10.2) establishes a direct functional relation- 
ship between dissolved calcium and carbon-total con- 
centrations, the total change in N i and C i, i.e. the 
change owing all processed including transport also 
obeys equation (10.4). 

To establish how carbonate equilibrium affects the 
exchange processes in the reservoir model we make use 
of equation (10.4) to compare perturbed and steady 
states. Neglecting spacial variability in chemical 
parameters within reservoir i we obtain directly: 

[Ca 2+1 [CO~- 1o 

[Ca +]o [CO]- ] 
(10.5) 

whence: 

where: 

- n  m - H m 2 

C mo mo mo 

AC n m 

Cm o N~ o 

(n) 
~m =~mo +~ml +... 

m o  

(10.11) 

(10.12) 
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As in the case of the C O  2 evasion factor, ~, the hydrog- 
en ion concentration, [H÷], must be determined or elimi- 
nated as an intermediate step in finding the carbonate 
factor, ~'m. Bolin and Eriksson (59) developed approxi- 
mate equations which essentially found the term, ~mo, 
of equation (10.12), while Bacastow and Keeling (79) 
used an iterative procedure without approximating the 
chemical equations, equivalent to determining all sig- 
nificant terms in equation (10.12). As in the case of ~, it 
is sufficient in our consideration of the problem merely 
to assume that the coefficients, ~mo, ~ml . . . . .  are 
known. The corresponding factors, ~io, Fit, .... of any 
subsurface reservoir, can similarly be assumed to be 
known. 

10.3 Model equations for  carbon-total 

To establish relationships for the two reservoir model 
adapted to include carbonate dissolution, the pertur- 
bation equations of carbon-total (equations (8.35)) are 
revised by the inclusion of carbonate sources, ~m and r/d 
defined by equation (10.4): 

(d /d t+ks )n  m - k 6 n d - - r l m = T m ,  (10.13) 

(d/dt + k6) n d - k 5 n m - Bd = 7a (10.14) 

where k5 and k6 are related by equations (8.38) and 
(8.39) to the steady state coefficients, kind and kind. 
Since the carbonate sources, ~/i are dependent upon the 
external sources, 3% they are here written on the left side 
of the equality sign (cf. equation (5.4)). 

To establish corresponding equations for dissolved 
calcium it is first necessary to determine the influence of 
the gravitational flux of particulate carbonate which 
accounts for about 30% of the total gravitational flux 
between surface and subsurface waters at steady state 
(Broecker, 74, p. 11), as noted in subsection 8.3. 

The new terms for this derivation will be designated 
by addition a subscript " c "  before the subscripts of the 
corresponding terms for carbon-total. The fluxes of cal- 
cium between reservoirs m and d, including both parti- 
culate and dissolved forms, are then given by" 

"x 

J Fcam =kd  C a 

(10.15) 

as the counterparts of equations (8.1) and (8.2). 
The gravitational fluxes of both organic particles and 

biogenic particulate carbonate were postulated by 
equation (8.18) to vary in response to changes in the 
amount of carbon-total in the ocean surface layer. Thus 
for the particulate carbonate flux by itself we write as 
the counterpart of equation (8.19): 

Since this flux consists of particles of CaCO 3, it may be 
regarded both as a flux of carbon-total and of calcium. 

Similarly for the perturbation in flux of calcium to 
subsurface water by both water transport and gravi- 
tational flux, as the counterpart of equation (8.22): 

ZXF ma : #cm nm / (10.17) 

or, alternatively, as the counterpart of equation (8.26): 

~l~Fc rn d = (fle m / [Jrn o ) kind nm ( 10 .18 )  

where ~cg and [3cra are power series in nm/Nmo defined 
in a manner similar to equation (8.20). 

Corresponding to equation (8.23): 

kmd~m Cmo Fo~eg 
[Jc m - ÷ 

Fdo Fao 

(10.19) 

The return perturbation flux of calcium is obtained 
directly from the second of equations (10.15) since only 
water motion is involved (cf. equation (8.27)): 

Fcdm = kd m A % .  ( 1 0 . 2 0 )  

In terms of the perturbation in carbon-total, rid: 

/•edrn = 

N. 
(10.21) 

where, analogous to equation (10.11) ~'d is defined by 
the expression: 

AC a n a 

Cao Nao 

(10.22) 

The perturbation equations for dissolved calcium are 
(cf. equations 8.34)): 

d C / d t  ( = d ACm/d 0 = AFar~ - ~ m a  + ~m 

d Ca/dt ( = d ACa/d 0 = ~ e m d  -- l~kFedra "1" 'l"ld t 
AFt,  = #eg F o  nm/Nmo" (10.16) (10.23) 
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where we assume that no external sources of  carbonate 
are present. Substitution for AFcm d and AFedm accord- 
ing to equations (10.18) and (10.21): 

d ACr. /dt  + [([3cm ~[3too)kind] n m - 

(~a C ao /N do) kam na - n~ = 0 

dACd/dt+ [(~'d C do/N do) kdm] n d -  

(~c r~ / ~m o) km a nm - % = 0 

.(10.24) 

/ 

These equations may be expressed as perturbations in 
carbon-total by eliminating d A C m / d t  and d A C d / d t  via 
equations (10.11) and (10.22), respectively. Introducing 
the symbols, 0i, to express the fractions of the change in 
reservoir abundances, hi, and in gravitational flux per- 
turbation, AFmd, which are not  due to carbonate dissol- 
ution, i.e.: 

0 m = 1 - t m  Cmo/Nmo (10.25) 

0cl = 1 --~d Cdo/Ndo (10.26) 

Og = 1 -~cr , ,  / ~m 

we obtain: 

(1 - Orn) dnm/dt  + (1 - 0 )  ([3rn/~mo) kind nrn - 

(1 - 0 a) kam n a - n m  = 0 

(1 - Oa) (d/dt + ka,n) n e - 

(1 - Og) ([3ml~mo) kma n m - rid = 0 

Eliminating kind 
(8.39), we obtain: 

(10.27) 

(10.28) 

and kdm via equations (8.38) and 

We obtain the desired equations for the carbon-total 
perturbations, ni, by substituting the above expressions 
for the calcium carbonate dissolution sources, ni, in 
equations (10.13) and (10.14): 

0 m (dnm/dt)  +Og k 5 n m - 0 u k 6 n a = 7m](10 .30 )  

0 u (d/dt + k6) n a - 0 u k 5 n m = 7 u 

From the definitions of  the functions, Oi, it can be 
seen that equations (10.30) account for the transport of  
carbon owing to the external sources, Yi, after subtract- 
ing the transport owing to carbonate dissolution. 

The fractions, 0 m and 0 d, are evaluated in terms of  the 
non-linear factors, g'm and ~d, defined by equation 
(10.11) and (10.22). The latter, as may be recalled, 
express how the concentrations of  calcium and carbon 
in surface and deep oceans vary in response to the 
external sources, 7i. The function, Og, depends not only 
on one of  these factors, ~m, but also on the parameters, 
fig and Bcg which express how the total gravitational 
flux, Fg, and the biogenic carbonate portion of  that 
flux, Fcg, respond to these external sources. To evaluate 
Og we proceed via equation (8.23) and (10.19) which de- 
fine tim and fcm, respectively. 

The factor, flcm, given by equation (10.19), is conve- 
niently reexpressed by an equation derived in the man- 
ner of  equation (8.25) with ~mCmo/Nmo replaced in 
accordance with equation (10.25), i.e.: 

f3cm =[3mo (1 -O, , , )+ f3cg(1  - fJmo ). (10.31) 

Substituting this expression for 13cm and the express- 
ion for tim of  equation (8.25) into equations (10.27) we 
obtain after some rearrangement: 

( 1  - f3mo ) [f3g (1 - Ore) - f lcg] 
=0 + 0g m 

[3too +(1 - /3mo)13g 

(10.32) 

(1 - Ore) d n m / d t  + (1 - Og) k 5 n m - 

( 1  - Oa) k 6 n d = rl,n 

( 1 - O a ) ( d / d t + k 6 ) n  a - ( 1 - O  ) k  s n  m =~?a 

(10.29) 

As can be seen, Om and 0g are equal unless the gravita- 
tional flux varies with external sources (i.e. fig and flcg 
are nonzero). 

10.4 M o d e l  equations f o r  rare isotopic carbon 

For the rare isotopes we are obliged to consider 
separately the two gravitational fluxes which were com- 
bined in section 8 as the single global flux, Fg. With 
properties of  the organic flux distinguished by the 
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subscript p (for 
redefine Fg as the sum: 

Fg = F  + ~ g .  

"particulate organic carbon") we 

(10.33) 

The perturbation factor, ~g, is likewise composed of a 
sum: 

where ~pg is defined (cf. equation (10.16)) by: 

(10.34) 
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If the perturbations in the gravitational flux for par- 
ticulate organic carbon and biogenic carbonate grow in 
proportion to their relative magnitude at steady-state, 
i.e. if: 

"x 

J  pg= ,F,o/Fo 

(10.39) 

then: 

~ ,  = {3ug F o n  / N  o. (10.35) Otm e [3 = Otc ra e fie, +aping [3pc (10.40) 

The fractionation factor, ~rng, associated with the 
steady-state gravitational flux, Fg o, is now defined as a 
weighted mean of the factors for organic carbon and 
biogenic carbonate: 

and the expressions for *k 5 and ks" simplify to the 
former equations (8.40), and (8.42) respectively. 

The former equations (8.37) for the perturbations of 
rare isotopic carbon are rewritten with isotopic carbon- 
ate sources: 

a ne = (c%m ̀  F e  ° + Otpm ̀  F e o ) / F g o .  (10.36) (d/dt + *k+*ks.) *nm - *k 6 *nd = R c "  . rl." 

Consistent with these definitions the perturbation 
flux, A'Fred,  given by equation (8.30) is now reexpressed 
with two separate terms associated respectively with 
fractionation of biogenic carbon and particulate organic 
carbon: 

+ RTm 7 "  + k s '  n m 

(d/dt + *X+*k6) *nd - *k 5 *n m = Rcd  rid 

A * F  d = k  a * n  m + % ' g [ R  ( F g  o + A F  ) - R  o F c g o l  ] 
+ R'~d 'Yd -- k s '  n 

(10.41) 

+%.,,JR (Fo+ZXF )-R oFo]. 

(10.37) 

where Rcm and Rdm denote, respectively, the isotopic 
ratios of  previously solid carbonate which is dissolving 
in surface and subsurface reservoirs. Eliminating the ~1, 
via equations (10.13) and (10.14): 

Proceeding as in subsection 8.5, we obtain for the 
perturbation exchange coefficient, *ks, and the virtual 
source coefficient, k 8': 

F ( c t  + (a  [3 +ct fl ) n m / N ' o )  
*k5 = k i n d  + go nag _ _ c r a g  ' cg p i n g '  pg  

N m o  1 + n m / N m o  . 

, R o F o  ( % ,  - % ' ,  - % . . ,  
k s = 

N n ° (1 + n ' / N m o  ) 

(10.38) 

(d/dt + *k+*k6) * n "  - *k s *nd = k s n m + RT,  n 7 "  

+Rein [(d/dt + k5) n m - k 6 n d - 7r n ] 

(d/dt + *;k + *k s) *n a *k 5 *nm = - k  8' n m + RTd 7 d 

+ Rcd [(d/dt + k6) n d - k 5 n m - 7d ] 

(10.42) 
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10.5 S o l v i n g  the  m o d e l  e q u a t i o n s  

In the four reservoir model the changes in formu- 
lation to allow for carbonate dissolution are now readily 
incorporated. In matrix notation the submatrices of 
equation (9.11) are: 

[kij] = 

m 

s + k I - k  2 

- k  1 s + k 2 + k 3 

0 - k  3 

0 0 

0 

- k  4 

m 

0 

0 

Ores + k 4 + Og k 5 - Odk 6 

-- Ogk 5 Ocl(s + k6) 

(10.43) 

- 1  

[k u' /Rao] = - -  
R 

a o  

B 

k 9 ' 

- k  9' 

0 

0 
l 

- k l o '  

klo I 

- R c r  n k a 

0 

0 

k 7 ' 

t t 

- k  7 +k s +R~,  n ( s+k  4 +k 5) 

_ k  s'  -Rcd k 5 

0 

0 

- R c m  k 0 

Red ~ + k s )  - 

(10.44) 

[*ko] = 

m 

s + *~, + *k 1 

- * k  1 

0 

0 
m 

- *k 2 

s + * ~  + * k  u + *k a 

- *k a 

0 

0 

- *k 4 

s + *~ + *k 4 + *k 5 

- * k  a 

- *k 6 

s + *~ + *k e 

(10.45) 

[ ~ i ]  = 

i 

~b 

% 

"Ym 

7d 

m 

| 

, [*q i /Roo]  - 
gao  

i m 

R3,b ~b 

R~/a r)" a 

(g./m - gem) 5% 

(g.rd -- g c d )  5'd 

m 

(10.46), (10.47) 
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The matrix [*k i j] is unchanged from the case without 
carbonate dissolution (equation (9.8)). Additional terms 
Rcmk 3 and Rcmk 4 arise in matrix [ko.'/Rao] as a result of  
including transfer terms between the atmosphere and 
surface layer in the equation for the ocean surface layer 
(cf. equations (9.2) and 10.13)). 

10.6 Influence of  magnesium on equilibrium 
carbonate dissolution 

Let us now consider briefly how the above relation- 
ships are modified if magnesium calcite rather than pure 
calcium carbonate remains in equilibrium with sea water 
during the industrial era. According to Wollast and 
Reinhard-Derie (77) this equilibrium involves a solid 
solution of  MgCO3 and CaCO3 for which the instantan- 
eous chemical reaction is: 

Mgx Ca(1 - x) C03 ~ x Mg 2 + + (1 - x) Ca 2 + + CO 3 2 -  

(10.48) 

where x is the mole fraction of  MgCO3 in the solid 
solution. For a finite extent of  reaction the mass balance 
relationship between dissolved and solid species is com- 
plicated owing to the tendency for the solid solution to 
change composition so as to maintain constant the 
quotients: 

aca ac03 
Kcaco 3 - 

acaco3 

aMg a c o 3  

KMgco 3 - _ 
aMgcO3 

(10.49) 

(10.50) 

where aca, aMg and aco3 are the chemical activities, 
respectively, of  Ca2 +, Mg2 +, and CO32 + in sea water, 
and acacO3 and GMgCO 3 a re  the activities in the solid 
phase. For a perturbation owing to industrial CO2, it is 
probably justified to assume that the chemical activities 
in the solid phase as well as in sea water are proportional 
to concentration since the ranges in concentration will 
be small. With this simplification: 

[Ca 2+] [C0a z -  ] = K p c  (1 - x )  (10.51) 

[Mg 2+] [C032-  ] = Ksp M x (10.52) 

where Ksp C and KspM are  constants for any given water 
mass. 

Since both magnesium and calcium ions are released 
by dissolution, let us redefine Ci as the sum of  the con- 
centrations of  Ca2+ and Mg2+ (including ion com- 

plexes) in oceanic reservoir i in moles times molecular 
weight of  carbon. Then, comparing perturbed and 
steady states (cf. equation (10.5): 

C/ [Ca 2+] + [Mg 2+ ] 
- -  . . . ~ .  

C~o [Ca2+]o + [ Mg2+]o. 
(10.53) 

where the concentrations denoted by the brackets apply 
to reservoir i. Eliminating [Ca2 + ] and [Mg2 + ] and their 
steady state values by means of  equations (10.51) and 
(10.52), we find that: 

C~ [C032-] 20 

Cio [C082-  ] 

K p c  (1 ~x)+/( ' spM x t(10.54) 

Kpc  (1 - Xo) + KpM XoJ 

where Xo is the mole fraction o f  MgCO3 in the solid 
solution at steady state. 

Since the mole fraction, x, is a function of  the total 
dissolved carbon in reservoir i it is again possible to 
obtain a Taylor 's  series expansion as in the case of  dis- 
solution of  CaCO 3. Thus the previous formulation of  
the two reservoir model with calcium carbonate dissol- 
ution still applies. The perturbation parameters ~'i and Oi 
take on different values, but the differences are ex- 
pected to be slight. 

If we assume an unlimited supply of  magnesian 
calcite then the mole fraction x is constant and equation 
(10.42) simplifies to: 

C i [CO3 2-  ] o 

C,o [co32- l 
(10.55) 

An assumption of  unlimited magnesium calcite is prob- 
ably not realistic, but in view of  the lack of  data on the 
solubility and occurrence of  magnesium carbonates, 
and lack of  assurance that equilibrium will be 
maintained during a perturbation by industrial CO2, it 
is not justified to attempt to evaluate x from the general 
mass balance and equilibrium relationships given by 
Wollast and Reinhard-Derie (77). We may therefore 
consider the equilibrium case as a somewhat dubious 
upper limit on the influence of  dissolution of  oceanic 
CO2 uptake. 

Because the molar concentration of  magnesium in sea 
water greatly exceeds that of  dissolved inorganic 
carbon, dissolution of  carbonate sediments in response 
to industrial CO2 could not appreciably change the sum 
of  the concentrations of  calcium and magnesium up to 
the present time. It follows from equations (10.55) that 
the carbonate ion concentration, [CO32-] in  sea water 
remains essentially constant if equilibrium with 
magnesium calcite is maintained. In this case, it can be 
shown that the CO2 evasion factor, ~, tends to a 
limiting value of  2. Since ~ is found to be approx- 
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imately 2.5 if magnesium is assumed to play no part in 
carbonate dissolution controlled by equilibrium with sea 
water (see section 11), the inclusion of  magnesium in the 
equilibrium will not produce marked changes in pre- 
diction. The possibility is so remote that calcium 
carbonate dissolution has occurred to the extent pre- 
dicted by ~ equal to 2.5, that the more extreme case of  
magnesium carbonate dissolution will not be further 
considered. 

11. Preparing the four reservoir model for calculations 

I I. l Strategy f o r  testing the mode l  

A limited analysis o f  the capabilities of  the foregoing 
four reservoir isotopic carbon cycle model will be under- 
taken now to identify which factors in the global carbon 
cycle appear  to be the most  important  in predicting the 
Suess Effect and, by extension, what is likely to be 
learned about  the carbon cycle f rom new isotopic time 
series. Existing information is adequate, or nearly so, to 
investigate the sensitivity of  the model to estimated 
uncertainties in the observational data from which the 
model parameters  are derived. Such an investigation is 
relatively straightforward because most of  the model 
parameters  behave as nearly independent variables, at 
least for small perturbations.  A sensitivity analysis, for 
example,  will indicate the order of  magnitude of  error in 
isotopic predictions when fractionation is neglected as 
in the Stuiver approximation.  

The best strategy for carrying out a sensitivity 
analysis is not immediately obvious, however. The 
degree of  numerical uncertainty in model parameters  
varies considerably. Also, some parameters  are closely 
related to observational data of  known accuracy, but 
others depend on indirect calculations. Some are 
difficult to trace back to observational data and some 
even rely on assumptions inconsistent with the model 
under examination.  Ideally, such indirect numerical 
inputs would be avoided altogether, but this would 
unduly complicate the analysis. 

A large and valuable part  o f  the observational data 
is closely related to the ou tpu t  produced by solving the 
differential equations of  the model under study. Direct 
use of  these data would require an inverse solution of  
the model equations, a task which is not only more 
complicated than the direct solution, but may lead to 
subtle mathematical  instabilities (Twomey, 77). This 
problem is lessened, however, if we restrict our 
attention to intervals of  the time record when the abun- 
dances of  both carbon-total  and rare isotopic carbon 
were changing nearly exponentially. Stated more 
correctly, we may steer around the inverse problem by 
concerning ourselves only with hypothetical cases of 
exponential perturbations similar, but not identical, to 
the perturbations which have actually occurred in the 
carbon cycle. 

As a major  simplification of  the real problem, the 
only time varying source of  carbon to be considered 
will be industrial CO2. Any man-induced CO2 ex- 
exchanges with the biosphere will be portrayed 
indirectly by an adjustment of  the biosphere pertur- 

bation factor, fla. This is equivalent to assuming that 
man ' s  effect on biospheric exchange, whatever its mag- 
nitude and direction, has risen proportionally with 
increased consumption of  fossil fuel.Actually this is not 
an unreasonable first approximation,  since fossil fuel 
has provided most o f  the world 's  commercial energy 
since the late 1800s, and man ' s  agricultural activities 
have grown roughly in proport ion to energy con- 
sumption.  Whether this is a good assumption or not, 
existing data on land clearing and forest practices are of  
little help in finding a better relationship. It is difficult 
enough just to estimate the cumulative amount  of  land 
cleared and forests harvested, and the resultant release 
of  CO2 to the atmosphere over the industrial era as a 
whole (Revelle, 77; Schlesinger, 77). Nevertheless, a 
sensitivity analysis involving less restricted biospheric 
sources would be valuable, and should be undertaken. 

As a further simplification, the sensitivities of  para- 
meters will be tested only for small perturbations such 
that a linearized model is adequate. This is an important  
first step, since it is necessary to establish which para- 
meters are critical to all perturbations whether large or 
small. 

Also, a concern about  future levels of  atmospheric 
CO2 applies mainly to carbon as a chemical and not as a 
tracer, and thus perfecting isotopic models applicable to 
the next century is not o f  great interest at this time. 
Conversely, because existing isotopic data are only 
useful to test models of  the carbon cycle during the 
recent period of  small perturbations,  these data are not 
o f  much help in establishing nonlinear relationships 
which are likely to appear  later on. This is especially the 
case for the 14C Suess Effect which extends only to 
about  A.D. 1954. The principal benefits of  isotopic 
studies are to validate steady-state parameters and to 
indicate the relative importance of  oceanic and bio- 
spheric uptake of  industrial CO2 over the past 100 yr. 

Because the average change in atmospheric CO2 con- 
centration since A.D. 1958 is known from direct 
observations, it is important  to establish parametric 
sensitivities in a manner  which does not contradict this 
record. This is especially necessary in connection with 
the atmospheric Suess Effect,  since the predicted 
isotopic ratios for both 13C and 14C closely follow the 
predicted rise in carbon-total ,  irrespective of  the para- 
meter being varied. 

Those parameters  which influence the prediction of  
the airborne fraction, ra, will therefore be covaried such 
that ra remains constant f rom case to case. Since the 
magnitude of  the biospheric perturbation parameter,  
flu, is unknown at present even as to its sign, this para- 
meter will be given the reduced status of  a dependent 
variable; it will be adjusted each time some other para- 
meter affecting carbon-total  is varied. This approach 
leads to some surprising relationships for different 
parametric choices, but as far as I can tell, leads to a 
more revealing analysis then if parameters are varied 
without regard for their effect on r a. As proposed in 
section l, the theoretical Suess Effect,  although con- 
sidered primarily a function of  industrial CO2 input to 
the carbon cycle, will be regarded also to be a function 
of  biospheric changes such as are implied by an adjust- 
able fla. 
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For an exponentially rising CO 2 input, a sensitivity analy- 
sis is essentially an examination of  how the reservoir 
fractions, *r i and r i, or more explicitly, their differ- 
ences: 

A r i  = *ri  --  r i ( 1 1 . 1 )  

vary as functions of  the model parameters.  These 
fractions, which are constant for a given exponential 
source, will therefore be tabulated for representative 
choices of  the model parameters .  The theoretical Suess 
Effect,  Si, for reservoir i, is readily derived f rom Ari, 
since (cf. equation (1.22)): 

S i : (Q/Ni) Ar i. (11.2) 

For 13C the function A6C i (cf. equation (1.27)) will 
be tabulated instead of  the Suess Effect since this 
quantity, expressed in terms of  13C/12C ratios instead of  
13C/C ratios, is more readily compared to published 
observational data. It is likely that a comprehensive set 
of  standardized input data to test carbon cycle models 
will soon be established elsewhere (Bolin, private 
communicat ion)  and, therefore,  I have made only a 
minor at tempt here to update  or refine existing obser- 
vational data. I have relied principally on my own 
previous investigations and those of  Oeschger et al. (75) 
to form a set o f  parameters  adequate for a sensitivity 
analysis. 

All calculations discussed below were performed 
using a version of  the four-reservoir which, for the 
oceans, closely resembles the box-diffusion model of  
Oeschger et al. (75), as described in subsection 8.6, 
above. 

Because of  the complexities o f  including an oceanic 
gravitational flux in the formulat ion for the box 
diffusion model,  and the relatively minor influence this 
flux has an isotopic ratios as demonstrated below, this 
feature of  the oceanic carbon cycle will be examined as a 
separate aspect of  the sensitivity analysis. 

11.2 Standardized model pararneters 

As a basis for testing the sensitivity of  the four-reser- 
voir model to changes in model parameters,  a standard 
case has been chosen which resembles the actual carbon 
cycle in as many respects as practicable. The essential 
inputs to the model for this standard case are listed in 
Table 2. Choices which are not obvious from the table 
and its footnotes will now be explained; first, in this 
subsection, for the case in which the gravitational flux, 
Fgo, is set equal to zero; then, in the following 
subsection, for the case where Fg o is not zero. 

The lack of  observational data prior to the industrial 
era makes difficult the assigning of  standard values, 
either to the steady-state abundances,  Nio, or to the 
steady-state exchange coefficients, kij. Some of  the 
choices must inevitably be based on computat ions 
which, strictly speaking, are themselves model 
dependent since, as noted in section 1, the available 
observational data are only for times when industrial 
CO2 has already begun to perturb the carbon cycle. The 

precise standard values used are, however, not critical to 
a sensitivity analysis, and therefore in most instances do 
not justify refining previous calculations to yield values 
fully consistent with the model under investigation. 

In the case of  CO2 exchange with the land biosphere, 
the variables selected as model inputs are the abun- 
dances Nao, Nbo, and the steady-state flux, Fbo. For 
purpose of establishing the steady-state coefficient, kab , 
(equal to the quotient Fbo/Nao) the value of  Nao will be 
assumed to be equivalent to a mixing ratio of  290 ppm. 
In calculating the atmospheric Suess Effect via equation 
( l l .2 )  the value of  Nao will depend, however, on the 
choice of  the time period being considered. To make 
this clear, the symbol Nae will henceforth be used to 
denote the amount  of  atmospheric CO2 corresponding 
to 290 ppm. This value is close to the value believed to 
have prevailed in the late 19th century, as discussed 
below. In contrast,  Nao will refer to the initial value of  
N a used in solving the model equations. 

In the case of  air-sea exchange, the chosen input para- 
meters, in addition to Nao, will be the steady-state coef- 
ficient, karn, and the depth of  water, h a, containing the 
same amount  of  inorganic carbon-total  as the atmos- 
phere in preindustrial times, i.e.: 

Nao Wrn 
h a - - -  (11.3) 

N A rlao 

where A is the area of  the oceans including adjacent 
seas. In terms of the depth of  the surface layer defined 
by: 

h,n = Wm/A (11.4) 

the abundance of  carbon-total  in surface ocean water is 
given by the expression: 

Nm o = N~e (hm/ha) (11.5) 

For convenience in comparing results with those of  
Oeschger et al. (75), h a will be set equal to 58 meters. 
For an oceanic area of  3.61 × 1014 (Sverdrup, 42) and 
Naoof6.156 x 1017g (see Table 2), this choice leads to a 
concentration of carbon-total  in surface sea water, Nao/ 
(Aha), of  29.50 g m -3 or 2.45 mmol  1-1. This concen- 
tration is an extreme value for deep Ocean water and 
thus nearly 20°/o too high for surface water, as noted 
below in subsection 11.3. If the surface waters of  ad- 
jacent seas, especially of  the Arctic ocean, are excluded, 
the implied deep ocean concentration is still higher. 
Because of  the insensitivity of  predictions of  the Suess 
Effect parameters (as found below) the choice of  
standard value is not important  enough to warrant re- 
adjustment.  

The air to sea exchange coefficient, kam, was 
calculated to be consistent with the steady-state vertical 
distribution of  14C/C implied by the box-diffusion 
model .  Numerical values for the parameters,  14Rmo/ 
14Rao, hm, and K were chosen to agree with those of 
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Table 2. Model parameters for the s tandard case 

Steady-state factors 

Notes Value /3,, gravitational flux dependence (11) 0 0 
carbon in land biosphere (1) 1560 × 1015 g of  C of  concentration of  carbon- 
flux o f  CO2 between a tmos-  (1) 26 × 1055 g of  C yr -I total in surface ocean 

Nbo,  
Fbo, 

sphere and land biosphere 
Na@ ' CO 2 in a tmosphere ,  for mixing (I) 615.6 × 1015 g of  C 

ratio of  290 ppm 
ha, depth o f  hypothetical surface (2) 58 m 

ocean layer containing Na • g of  
carbon 

hm, depth of  surface ocean layer (2) 75 m 
hs, average depth of  ocean (2) 3800 m 

(including adjacent seas) 
]Cam , t ransfer  coefficient for uptake (3) 1/(7.53 yr) 

o f  CO2 by surface ocean 
K, vertical eddy diffusion coeffi- (2) 3987 m ~ yr -l 

cient 
kdm , transfer coefficient for carbon- (4) 1/(1129 yr) 

total f rom deep ocean to sur- 
face ocean 

,no, ratio o f  concentrat ion o f  (4) 2.09 mmol  f l /2 .33  
carbon-total  in surface ocean mmol  f t  
water to that in deep ocean 
water 

F g o ,  gravitational flux of  particulate (4) 3.5 × 1015 g of  C yr -l 
organic carbon and biogenic 
carbonate from surface to deep 
ocean 

Fcgo/Fgo, fraction o f  gravitational flux (5) 0.3 
which is biogenic carbonate 

Carbon isotopic fractionation factors 

*q~,, perturbation function for (12) 1.0 1.0 
evasion of  C02 from surface 
ocean 

~°~, perturbation function for land (12) 1.0 1.0 
biospheric uptake o f  CO2 

q~b°, same for biospheric release (12) 1.0 1.0 
0~, carbonate dissolution factor (9) 1.0 0.53653 

for surface ocean 
0,, same for deep ocean (9) 1.0 0.53036 

Other factors 

Notes 13C 14C 

a°~, uptake of  C O  2 by land bio- (6) 0.982 (0.982) 2 
sphere 

~ , ,  release of  CO 2 by land bio- (6) 1.0 1.0 
sphere 

a , , ,  uptake of  C O  2 by surface (6) 0.986 (0.986) 2 
ocean 

c~,~,  equilibrium between atmos-  (6) 1.009 ( l .009y 
pheric CO2 and surface oceanic 
bicarbonate 

am,, transfer in surface ocean from (7) 0.983 (0.983y 
bicarbonate to carbon of  the 
gravitational flux (particulate 
organic carbon and biogenic 
carbonate combined) 

c ~ ,  transfer in surface ocean from (8) 0.999 (0.999y 
bicarbonate to particulate (bio- 
genic) carbonate 

Perturbat ion factors and functions 

~°, 

~a p , 

surface ocean CO2 ("evasion 
factor")  
same for rare isotopic carbon 
atmospheric  dependence o f  
land biospheric uptake of  CO2, 
("biospheric growth factor")  
A . D .  1956-1978 
Same for A.D.  1886-1956 
atmospheric  dependence o f  
land biospheric release o f  CO2 
land biospheric dependence o f  
net release of  CO2 

Carbon-  Carbon-  
ate dissol- ate dissol- 

ution ution 
Notes absent included 

(9) 8.8957 2.4282 

( 9 )  = ~ = 

(10) 0.290549-0.113678 

(10)-0 .325097 -0 .656475 
(11) 0 0 

(11) o 0 

Notes Value 

14)~, radioactive decay constant  for (1) 1/(8267 yr) 
14 C 

13~O ' 13C/12C ratio o f  s tandard,  (13) 0.0112372 
P.D.B.  

13Ro,  13C/C ratio o f  same (14) 0.0111123 
A, area of  oceans (15) 3.61 x 1014 cm ~ 

(1) Keeling (1973b) p. 301. 
(2) Oeschger etal. (1975) p. 184. 
(3) Calculated by equation (l 1.6). 
(4) Applicable only if gravitational flux is included in model.  Con- 

centration ratio, /3m: from deep ocean data  o f  Eriksson (1959) 
p. 151 and surface ocean data  o f  Keeling (1973b) p. 298 as ex- 
plained in subsection 11.3. Flux, Fgo: calculated by equation 
(11.41). Coefficient, kdm: by equation (11.42) as explained in 
subsection 11.3. (This non-zero value of  kdm applies only to the 
calculation of  Ndo with non-zero Fgo, see Table 4 and subsection 
8.6.) 

(5) Broecker (1974) p. II .  Applicable only if Fg o is non-zero. See 
note (4), above. 

(6) Keeling (1973b) p. 302. The fractionation factors from 14C are 
the square o f  the corresponding 13C factors (Skirrow, 1965, p. 
288). 

(7) From direct measurements  of  13C/12C ratios and the concen- 
tration o f  carbon-total  in sea water Craig (1970) p. 693 estimated 
the following 513C values: for the gravitational flux irrespective 
o f  its chemical form: -15~o0 for carbon-total  in surface water 
+2%0::hence 13Ot,,~ = 0.983. 14c~.~ is obtained as the square. 
(This computat ion does not  require separate consideration o f  the 
particular organic carbon and biogenic carbonate as discussed in 
section 8.3 and expressed by equation (10.36). Assuming that 30% 
of  the flux is carbonate with a ~13C of  + 1 ~0, consistent with 
recent nannofossi ls  (see note (8) below), Craig 's  value implies 
6~3C of  particular organic carbon of  -22,1, and thus 13upm~ = 
0.976). 

(8) Kroopnick et al. (1977) p. 304 indicate in their figure 5 an aver- 
age 613C for I :C in  ocean surface water of  +2.0~00. Also, they 
state (p. 318) that recent nannofossi ls  exhibit t~13C of  0.6 to 
0.8 ~00 ;hence a fractionation factor of  0.999. Laboratory experi- 
ments  o f  Rubinson and Clayton quoted by Kroopnick et al. 
(1977) p. 318 confirm this value. 

(9) Bacastow and Keeling (1979). Factor o f  rare isotopic carbon 
assumed to be same as for carbon-total.  

(10) Adjusted such that the model reproduces the observed cumu- 
lative airborne fraction for the prescribed time interval. 

(11) Assumed to be zero as described in subsection 4.3 of  the text. 
(12) Assumed to be unity, consistent with small perturbations. 
(13) Mook and Grootes (1973). See also Craig (1957). 
(14) By equation (11.27). 
(15) Sverdrup et al. (1942) p. 15. Area includes adjacent seas. Used 

only in the determination of  the gravitational flux, Fg o. See sub- 
section 11.3 and note (4), above. 
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Oeschger et aL (75). Since these authors calibrated their 
model using 14C/C ratios corrected for isotopic frac- 
tionation, a special procedure was followed in applying 
their calibration to the present model which includes 
fractionation in its formulation. 

Specifically, the steady-state relationship for 14C/C 
of  Keeling and Bacastow (73b, p. 288; equation (6.30)) 
leads to the relationship: 

tanh ~ h d 
14Rdo / 14Rmo = (11.11) 

X/-~ l K h .  

Adopting the values of  *X, K, hm and hd of  Oeschger et 
al. (see Table 2) we obtain: 

1 4 ~  14 R Rdo / mo= 0.879864. 

k = *~k 
£1171 

[(14 R m o / 14Ra o)/(hm/ha ) + (14R'--~o / 14 Rao)/(hd/ha)] 

1 - 14R /14R 
m O  a O  

(1 1.6) 

where the fractionation factors, Ctar n and Ctma, have been 
set equal to unity in accordance with the use of  cor- 
rected ratios, and 14gdo denotes the average 14C/C ratio 
of  the subsurface ocean. Since the gravitational flux is 
assumed to be zero, the concentration of  carbon is 
everywhere the same, i.e.: 

d o  N E r l  O 

W a W m 

(11.7) 

In terms of  the depths, h m and h a, as defined by 
equations (11.3) and (11.4) and the areal average depth 
of  the deep ocean, hd, defined by: 

h a = Wa/A (11.8) 

the oceanic abundances, Nmo and Ndo, are related to 
each other and to the atmospheric abundance, N a • by: 

h d h m h a 

(11.9) 

Consistent with the above equations the mass ratios, 
Nmo/Nao and Ndo/Nao, in equation (6.30) of  Keeling 
and Bacastow (73b) have been replaced by correspond- 
ing depth ratios, hm/h a and hd/h a. 

The box diffusion model (Oeschger, 75) predicts that 
the corrected 14C/C ratio of  subsurface water at steady- 
state varies with depth according to: 

14Rdo (z) coshFN/*X / K (h d - z) ] 
m 

14 R 
m o  coshE~/*X / K hat "] 

(1 1.10) 

where z denotes the vertical coordinate, positive down- 
ward. The vertically averaged value of  Rdo is obtained 
by integrating equation (11.10) from z -- hm to z = h m 
+ h d. Hence: 

For the ratio, 14Rmo/14Rao , Oeschger et aL (75) adopted 
the value 0.950 based on direct observations of  14C/C 
ratio of  surface water obtained from A.D. 1955 to mid- 
1977. These are the earliest observations of  14C in sur- 
face water and are the closest to preindustrial conditions 
ever obtained. 

To assume that these data are representative of  pre- 
industrial values is in contrast to the approach of  Bacas- 
tow and Keeling (73) who assumed that surface water as 
late as A.D. 1955 was influenced by industrial CO2 and 
forced their model to predict the observed values of  
14Rm/14R a on this assumption. They unavoidably 
obtained slightly different values of  the preindustrial 
ratio, 14Rmo/14Rao, as a function of  various choices 
of  other model parameters. 

It may be argued that 14C from weapons testing in 
1954 had already entered surface waters so as to very 
nearly compensate for the local Suess Effect at the time 
of  the early surface water measurements. This view is 
supported by the coral records of  Nozaki et al. (78), and 
Druffel and Linick (78), but additional proxy records of  
surface water 14C/C would be valuable as further verifi- 
cation. In any case the uncertainty in the significance of  
the observed values of  surface water 14C/C in the 1950s 
suggests that the refinements in the calculation of  Ba- 
castow and Keeling (73) are not justified here. Therefore 
the value 0.950 will be adopted; whence, we obtain via 
equation (11.4): 

- 1  = 7.53 yr. kam 

This value was not changed when h a or K were af ter- .  
wards varied in the sensitivity analysis, because funda- 
mentally kam is an expression of  gas exchange which 
does not depend on either ha or K. 

On the other hand, the steady state relationships 
between ]Cam and 14gmo should be made internally con- 
sistent in model calculations where fractionation is in- 
cluded. Accordingly, after the value of  kam was 
established, the value of  14Rmo was redetermined 
making full use of  the steady state relationship with 
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fractionation (but not the gravitational flux) included 
(Keeling, 73b, p. 388; equation (6.31)) i.e.: 

14 R 14~ 
r n  o a m  

14 - -  14Rm 14Rao 14Otma + (*X/k) [(hm/ha) + ( Rdo / o) (ha/h.)] 
(11.12) 

F o r  13C,  the steady state isotopic ratio for surface 
water was calculated on the assumption of equilibrium 
with the atmosphere, i.e.: 

X3R /13R = t 3 a  (11.13) mo a o  e q  

where 13Oteq , the equilibrium fractionation factor (equal 
tO Otarn/Otma), is known from laboratory data (Deuser, 
67; Mook,  74). 

For deep water in the absence of  a gravitational flux, 
since transport by water is without fractionation: 

13Rmo = 13Rdo. (11.14) 

With respect to carbonate dissolution, chemical equi- 
librium was assumed for both isotopes between solid 
carbonate and total dissolved inorganic carbon in the 
sea water of  the reservoir involved, i.e.: 

Rcio/Rio = O~ic 
(11.15) 

i = m , d  

where Oqc denotes the equilibrium fractionation factor 
between dissolved bicarbonate and solid carbonate for 
reservoir i. Since the assumption of  equilibrium for 
carbon-total is an extreme case chosen essentially as an 
upper limit of  the extent of  dissolution, it seems logical 
to adopt an upper limit for the 14C concentration in 
carbonates by leaving out of  consideration the possible 
radioactive decay of  14C of  the carbonate undergoing 
dissolution. 

With respect to the land biosphere, the ratio 14Rbo/ 
14gao for carbon-14 was calculated by the expression: 

340 I I I I I I I I T I I 
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14Rbo 140tab 
- (11.16) 

14Rao 14o~b, * + *XNbo/Fbo 
This equation is derived by solving the first of  equations 
(6.7) for Rbo/Rao after replacing kba by its equivalent 
Fbo/Nbo according to the first of  equations (4.12). 

For the land biosphere, in accordance with equations 
(6.7) applied to 13C, with 133, set equal to zero (cf. 
equations (2.27)): 

13Rbo / 13Rao = 130iab / 1301ba. (11.17) 

The theoretical Suess Effect for 13C will be compared 
with observations for the period A.D. 1956 to 1978. For 
all but the first three years of  this period the concen- 
tration of  CO2 in the atmosphere is established from 
nearly continuous measurements at Mauna Loa Obser- 
vatory, Hawaii and twice monthly data from the South 
Pole (Keeling, 76a, 76b and unpublished) but even for 
the earlier years, A.D. 1956 to 1959, enough direct mea- 
surements were made elsewhere to establish monthly 
average concentrations reasonably representative of  the 
northern hemisphere (Keeling, 78). For A.D. 1955, 
1956 and 1978 13C/12C ratios of  atmospheric CO2 were 
also measured concurrently with concentration mea- 
surements. 

From these data, Keeling et aL(79) computed best esti- 
mates of  the concentration of  carbon-total and of  the 
13C/12C ratio of  atmospheric COx in the northern hemi- 
sphere for January 1 of  1956 and 1978, as listed in Table 
3. For atmospheric CO2 (Fig. 7) the concentration has 
risen in a manner consistent with an exponentially rising 
input of  industrial CO2. The e-fold time of  rise for 
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Fig. 7. Trend in concentration of atmospheric CO2 at Manna  Loa Observa- 
tory, Hawaii (19°N, 156°W). Dots: Monthly average concentrations in parts 
per million (ppm) by volume of  dry air. Curve: exponential fit of  the monthly  
averages after seasonal adjustment  as described by Bacastow and Keeling (73). 
Points before March 1958 refer to proxy data (Keeling, 78) which are not in- 

cluded in determining the exponential fit. 
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Table 3. Additional model parameters  related to industrial and atmos- 
pheric CO 2 for the s tandard case 

Time interval (/l - /2): 1886-1956 1956-1978 

Industr ial  CO 2 Notes 
production rate for A.D.  1860 (1) 0.1963 0.08346 

Gt /y r  Gt /y r  
#, exponential factor (1) 0.0241/yr 0.1M33/yr 

#.n, e-fold time (2) 41 yr 22 yr 
Q2-Q1, cumulative production from (3) 67.13713 78.81615 

t I to t 2 Gt Gt 
~,/o/#, cumulative production coeffi- (4) 14.87260 45.86916 

cient which multiplies exponen- Gt Gt 
tial factor, e ~' (equal to Ql) 

Atmospheric  CO 2 

atmospheric  CO 2 concentration at tl 
same at 12 
Nat, atmospher ic  CO 2 abundance  at 

tl 
Na2, same at t 2 

nao, coefficient which multiplies 
exponential  factor, e ~t 

Nao, preindustrial abundance,  
assuming an exponential rate 
o f  increase during the indus- 
trial era 

Isotopic Ratios 

(5) 288 .4ppm 314.1ppm 
(5) 314 .1ppm 334.2ppm 
(6) 612.20359 666.75848 

Gt Gt 
(6) 666.75848 709.42593 

Gt Gt 
(7) 12.08531 24.83146 

Gt Gt 
(8) 600.11827 641.92702 

Gt Gt 

13Flaf/Rao, 13C/C ratio of  industrial CO2 (9) - -  0.980 
nSRao, relative to preindustrial a tmos-  

pheric CO2 
13Ca/, 13C/12C ratio relative to stan- (10) - -  -6.69 %0 

dard P.D.B. of  a tmospheric  
CO2 at/1 

13Ca2, same at t2 (10) - -  -7.24 %0 

Notes 
(l) Based on least squares fit to industrial CO 2 production data 

(Keeling et al.,  1979b) using equat ion (11.18) with t = 0 on Janu-  
ary l,  1860. Gt = 1015gofC.  

(2) For A.D.  1886 - 1956 reciprocal o f  above values o f  t~, rounded 
to nearest year. For A.D.  1956 - 1978 22 yr was adopted (in- 
stead of  23 yr as given from above value of  #) to conform to the 
value used earlier by Keeling and Bacastow (1977) p. 93. 

(3} Based directly on production data o f  Keeling et ak (1979b). 
(4) Computed  by equation ( l l .20)  using above values of  Q2 - Q1 

and #-l; t = 0 for yr tl. 
(5) For A.D.  1886 from Callendar 0958)  as described in subsection 

I 1.2. For A.D. 1956 and 1978 from Keeling et aL (1979a). 
(6) Computed  from above assuming that 290 ppm corresponds to 

615.6 Gt (see N a g  of  Table 2). Abundances  are expressed to 
nearest l0 -5 Gt to avoid rounding errors as isotopic parameters 
are varied. 

(7) Computed  by equation (11.22) with above values for Nal, Na2, 
and~-S; t  = 0 f o r y r h .  

(8) Computed  from equation (11.21) with t = 0, N a = Nal,  and 
above value of  nao. 

(9) From Schwarz (1970) the following approximate averages 
are deduced for c513C: coal, -24 *700 crude oil, -27o700; natural gas, 
-40 %0; cement (limestone), 0 o70Q. The proport ions of these fuels 
and of  cement in 1956 (Keeling, 1973a) p. 193 were 0.599, 0.307, 
0.079, 0.015. In 1977 they were 0.304, 0.493, 0.188, and 0.015 
according to Table 1 o f  United Nations (1978) p. 2, assuming the 
same proport ion from cement.  Hence the 6~3C of  industrial CO 2 
was -25.8°70o in 1956; -28.1o7oo in 1977. The weighted average 
(total of  2.96 × 10 ~5 g C in 1956, 5.25 × 1015 g C in 1977 (Keel- 
ing et  al.,  1979b) is -27.4o1oo . The 613C of  preindustrial CO 2 is 
found by the model to be -6.4°7,o (see Table 4), hence Rf /Rao  is 
approximately 0.9791. ~This value was rounded to 0.980 in the 
calculations. 

(10) Keeling et al. (1979a). 
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atmospheric CO 2 found as the best fit to the data is 23 
yr, in agreement with that of  industrial CO2 for the 
same time interval as indicated in Table 3. 

For 1 3 C O  2 a corresponding exponential trend cannot 
be ascertained from observations. Indeed, it would be 
difficult to establish such a trend even if a complete 
series of  observations were available, because the shift 
in 13C/12C ratio is too small. Thus the only practical 
means of  comparing atmospheric 13CO2 observation 
with prediction is in terms of  the shift in 13C/12C ratio 
f rom the beginning to the end of  the interval assuming 
the shift to be consistent with the trend in atmospheric 
CO2. 

To calculate the theoretical Suess Effect for 14C, 1 
have chosen the period A.D. 1886 to 1956 on the basis 
of  meager,  but perhaps relevant, atmospheric CO 2 con- 
centration data of  western Europe for the late nine- 
teenth century. These data were examined in detail by 
Callendar (38, 40) who sought to establish which 
measurements were most representative of  the " f ree  air 
of  the North Atlantic region."  He selected only those 
observations at rural sites near the Atlantic sea coast for 
which he could establish from local meteorological data 
and weather maps that the air flux had come from the 
Atlantic ocean at the time of  sampling. From the five 
sets of  most precise observation he established "pre-  
ferred"  values of  291,289,  287, 289, and 286 ppm for 
approximately the years 1872, 1880, 1881, 1897, and 
1900, respectively (Callendar, 58). These values show no 
trend. The unweighted mean is 288.4 ppm, and the 
average year is 1886. 

Of  special interest is that Callendar also deduced 
f rom these five sets of  selected observations what we 
now know to be approximately the correct seasonal 
variation in CO2 for the latitude of  the observations 
(Fig. 8). To my knowledge, no other study for the 19th 
century ever made this discovery. For example, the 
exhaustive statistical analysis of  Bray (59) yields an 
amplitude which is too high and a maximum in January 
when it should appear in late spring. To what degree can 
Callendar 's  selected data be biased by local contami- 
nation and still reproduce the correct seasonal ampli- 
tude? One cannot be certain, especially since the vari- 
ation is deduced from the data for all wind directions 
with an annual mean of  295 ppm. Nevertheless, bias 
with respect to the preferred mean greater than the 
amplitude itself would seem unlikely. Therefore the 
mean concentration near A.D. 1890 might be expected 
to lie between 280 and 296 ppm. I would judge that a 
bias from the chemical analysis would be less important 
than that from sampling errors, because several 
methods were used, and the investigators typically 
claimed accuracies of  the order of  I ppm. 

The choice of  A.D. 1956 is dictated by the necessity to 
terminate the calculation close to the time when the 14C 
Suess Effect was obliterated by nuclear weapons testing. 
The advent of  accurate data in A.D. 1956, is only a 
short time after A.D. 1953, the first year in which large 
amounts  of  14C were released into the air. Thus only the 
predictions for the last few years of  the interval need to 
be discarded. 

The model calculations, based on the intervals A.D. 
1886 to 1956 and 1956 to 1978, were carried out as 



284 Charles D. Keeling 

4 

2 

o 

-2 

2 

0 

-2 

-4 

I I [ I I I 

\ / \ 
\ / \ 
\ / \ 
\ / \ 
\ / \ 

\, \ / ~ '\ 
"\\\\ ,,~ \\ 

• \ \  ~ / /  

\¢ 

. . .tx . i ~  
. /  \ 

/// 'X ./" 

J L ~ I I I 
Wl  SP SU FA W l  SP 

Fig. 8. Seasonal variation in atmospheric CO2 for western Europe in 
the late nineteenth century as deduced by Callendar (40) compared 
with data from other sources. Upper and lower solid lines: Callendar's 
values. Upper dashed lines: nineteenth century European means of 
Bray (59, p. 222) assuming same annual average as Callendar. Lower 
dashedlines." Weather Ship 'P' at 50°N, 145°W from A.D. 1969-1978 
(Keeling et aL, unpublished). Lower dot-dashed curve: aircraft data 
for 50°N as summarized by Bolin (63, p. 3911). W [  = winter, SP = 
spring, SU = summer, FA = fall. Winter and spring are plotted twice 

to reveal the seasonal patterns more fully. 

follows. First, as indicated in Table 3, data for the 
annual production of  industrial CO2 were fitted by the 
method of  least squares to the function (cf. equation 
(2.16)): 

7 t = 7to e/at (11.18) 

over the time interval in question, t 1 to t2, to obtain a 
value for the e-fold time, #-l. The cumulative pro- 
duction of  CO 2 was assumed to obey the relationship 
(cf. equation (2.18) and Figs 8 and 9): 

Q = (Tfo [/a) e/at (11.19) 

2500 
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q860 

I I I ] I I I I I 

I I I I I I i I I 
1880 1900 ~920 1940 1960 

Y E A R  

Fig. 9. The rate of production of industrial CO2 as in Fig. l except 
that the curve is an exponential fit to the interval A.D. 1886 - 1956. 

The e-fold time is approximately 41.4 yr. 

where ~-1 was given by the above curve fit, except 
rounded to the nearest year. The value of  7 f o / #  was then 
determined such that equation (11.18) exactly predicted 
the observed cumulative production f rom tl to t 2, i.e.: 

7to [/a = (Q2 - Q1 )/(e/at2 - e # t i ) .  (11.20) 

The increase in atmospheric CO 2 was assumed to 
obey the relationship (cf. equation (2.19)): 

N = N  +n e/at (11.21) 
G GO G O  

The constant,  nao, was determined such that equation 
(11.21) exactly predicted the observed amount  of  atmos- 
pheric CO 2 at tl and f2, i.e.: 

nao = ( N  2 - N1) / ( e / a t z  - e/atx). (11.22) 

The airborne fraction over the interval was then calcu- 
lated by the expression: 

rG = ( N 2  - N I ) / ( Q 2  - Qz)- (11.23) 

Finally, Nao was calculated to be consistent with 
equation (11.21), i.e.: 

N O = N  1 - nGo e/at l  (11.24) 

Next, the biospheric perturbat ion factor, /3 a, was 
adjusted by trial so that the model predicted r a, as deter- 
mined a b o v e ,  w i th in  1 part  in 108. S ince  the  to ta l  
a m o u n t  o f  c a r b o n  in a n y  reservo ir  for  an e x p o n e n t i a l  
source (cf. equation (2 .19 ) ) ,  is given by: 

N i = Nio + nio e/at  (11.25) 

at any time, t, it follows (cf. equations (2.23) and 
(11.18)) that: 

Ni = Ni  o + riQ (11,26) 

where ri is given by the model prediction. 
The theoretical Suess Effect  in reservoir i for either 

isotope was computed by equation (11.2), where Q was 
obtained according to equation (11.19), N i  was obtained 
via equation (11.26) and A r  i was computed by the 
model. 

For 13C the shift in 13C/12C isotope was also calcu- 
lated to facilitate comparison with observational data. 

The isotopic abundance of  13C in natural materials is 
almost always expressed in terms of  its ratio to 12C. 
Conversion to this mode of  expression f rom the 13C/C 
ratios of  the model and vice versa is accomplished by the 
formulas: 

R = ;t,/(1 + tt ) (11.27) 

= R[(1 - R )  (11.28) 
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where r and R denote, respectively the *C/{2C and 
*C/C ratios of  the substance under investigation, and 
*C denotes a rare isotope of  carbon. For a carbon pool 
containing an amount  of  carbon-total,  N, with corre- 
sponding amount  of  rare carbon isotope *N" 

r = *iV/tZN (11.29) 

= *N/(N- *N) (11.30) 

while, consistent with equation (1.1): 

R = *N/N. (11.31) 

The corresponding expressions for the relative variation 
from a standard ratio (cf. equation (1.25)) in the two 
modes are: 

6 C = R / R • -  1 (11.32) 

r (1  + 
= - 1 (11.33)  

~'t(1 + ,'t ) 

6"C = r / r  - 1  (11.34) 

R ( 1 - R ~  

R • ( 1  - R )  
1 (11.35)  

where subscript, . , denotes a standard ratio and where 
the symbol, 6"C, denotes a *C/12C ratio, relative to a 
standard. 

To calculate the shift in t~13C the first step was to 
compute the theoretical atmospheric 13C Suess Effect at 
time, q ,  by the model. Then the preindustrial 13C/C 
ratio for atmospheric CO2 was computed as a function 
of  the shift in {3C/C ratio indicated by this Suess Effect 
(now regarded as an estimate of  the observable Suess 
Effect, Sal ) and the observed t~13C value for atmos- 
pheric CO2 in A.D. 1956. Specifically, the relative 
ratio, 13Ral/13Re , was first evaluated from the obser- 
vations by the formula: 

( 6 1 a C  1 + 1 ) ( 1 + 1 a  r e  ) 
1 la R = (11.36) aRol / • 

l + ( 6 x a c  z + l )  la  r •  

which follows from equations (11.32), (11.33) and 
(11.34). Then in accordance with the definition of  the 
theoretical Suess Effect (equation (1.7)) the preindus- 
trial ratio relative to standard was found by the 
formula: 
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laR,o ] laR• = (laRaz ] laRe)/(laS, z + 1). (11.37) 

The isotopic shifts for all reservoirs at any time, t, 
were computed by essentially reversing the above pro- 
cedure. First, from the 13C Suess Effect, {3Si, as com- 
puted by the model, the 13C/C isotopic ratio relative to 
standard was found by the formula: 

laRi / 1aRe = ,o  _ _  (13Si  

laRao \ laR e 
+1) 

(11.38) 

where the 13Rio/13Rao were established from the equili- 
brium fractionation factors listed in Table 2. From the 
ratios, 13Ri/13Re ' the corresponding t513C values were 
computed by: 

(laR i / laR e) (1 - aaR.)  
6 l a c  i = - 1. (11.39) 

1 - ( laR i / l aRe)  laR e 

The preindustrial {3C value of  reservoir i was calcu- 
lated by the same procedure but with Si equal to zero in 
equation (11.38). Specifically: 

( l aRio  / laRao ) (laRao / l a R  e)  (1 - 1aRe) 
6XaC. = - 1. 

I O  

1 - (13Rio / ZaRao ) (13Rao / 13Re) 13R e 

(11.40) 

11.3 Inclusion of  an oceanic gravitational flux 

To determine the theoretical Suess Effect using the 
four-reservoir model with an oceanic gravitational flux, 
Fg, included in the formulation, the approach will be to 
modify the calculations just described by explicitly 
including terms proportional to Fg. These terms will be 
evaluated in such a way that the steady-state parameters 
for the deep ocean are modified but not those for the 
surface ocean, on the grounds that the latter are better 
known from observational data than are the former. 
Specifically, equation (8.65), which relates to the ex- 
change of  rare isotopic carbon between surface and 
deep water for nonzero Fg, will be employed to evaluate 
the perturbation coefficient, *ks, in place of  equation 
(8.63). To reduce the complexity of  the calculation, and 
since little evidence exists to support a time variable 
flux, only a constant gravitational flux, Fg o, will be con- 
sidered in the calculations at this point (i.e. Be will be 
set equal to zero). It follows that equations (8.62) and 
(8.64) which relate to the exchange of  carbon-total with 
zero and nonzero Fgo, respectively, lead to the same 
value for ks. This is to be expected since a constant 
gravitational flux cannot perturb the distribution of  
carbon-total.  

A separate calculation will now be made to estimate 
the magnitude of  the flux, Fg o. Since, as discussed in 
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subsection 8.6, neither data nor methodology are avail- 
able to calculate this flux using the box diffusion 
model, the two reservoir model will serve as a substitute. 
Specifically, the perturbation coefficients for the return 
fluxes from the deep ocean, k6 and *k 6, for the purpose 
of  calculating Fgo, are made compatible with the steady- 
state equation (8.3) rather than being set equal to zero. 
In this way equation (8.14) can be employed in the 
calculation. Rewritten in terms of  the deep water depth, 
h d, and the area of  the oceans, A, this expression is: 

(N~a° Nra ° t F ° = ka, n haA w 
(11.41) 

i.e. the steady-state gravitational flux, in the two reser- 
voir oceanic model, is proportional to the steady-state 
coefficient, kdm, and to the concentration in carbon- 
total different between surface and deep water (Ndo/ 
W d - Nmo/Wm). In computing kdm we preserve a 
reasonable degree of  correspondence at steady-state 
with the box diffusion model of  Oeschger et aL (75) by 
solving the first equality of  equation (8.16) for kdm -l 
with isotopic fractionation ignored, i.e.: 

14 14~--1 kdra - 1  = [( Rmo /14Rdo  ) -- 1] (11.42) 

where 14Rrno/14Rdo is set equal to the value derived in 
subsection 11.2. The result, rounded to the nearest year, 
is: 

ka m = 1/(1129 yr). 

The global average vertical concentration gradient in 
carbon-total in sea water may be roughly established 
from several sets of  published data, but no accurate 
gradient can be derived from these sets because of the 
necessity to consider data of  questionable reliability to 
obtain results for all of  the major oceans. Even the best 
of  the published data are somewhat questionable. The 
chemical studies of  the GEOSECS expeditions (Craig, 
74) have produced an extensive set of  new observations, 
but these data are still being evaluated and have not yet 
been brought out in suitable summary form. 

The best known summary data for deep water are by 
Eriksson (59, p. 151), based on the Swedish Deep Sea 
Expedition (A.D. 1945 to 1948), by Postma (64, p. 274; 
Fig. 10) based on Russian Expeditions of  the Inter- 
national Geophysical Year (I.G.Y.) (A.D. 1957 
1958), and by Li (69, p. 5519; Fig. 5) based on expe- 
ditions of  the Vema and Conrad (A.D. 1956 - 1966). 
These sources suggest that the world average is between 
2.30 and 2.40 mmol e -l. These data may be regarded as 
preindustrial because of  the very small admixture of  
industrial CO2 which could occur in deep water up to 
now. Since the estimate of  Eriksson was derived specifi- 
cally for global model studies and is not inconsistent 
with the other sources, I shall adopt his value of 2.33 
mmol e "1 (28.0 g m -3) as the average for all waters below 
75 m depth. 

For total dissolved inorganic carbon in surface water 

I will accept the estimate of  Keeling (73b, p. 298) of  2.09 
mmol g-1 (25.1 mg m °3) based on alkalinity and pH data 
of  the same Russian I.G.Y. (Expeditions considered by 
Postma.)  Carbon-total concentrations were originally 
calculated by Keeling (73b) using the dissociation con- 
stants of  both Buch (51) and Lyman (57). Recent 
evidence (Mehrbach, 73; Takahaski,  76; Sundquist, 79) 
indicate that Lyman's  constant is more nearly correct 
than Buch's, and I therefore choose this value over 2.06 
mmol gl, based on Buch's constants. These data have 
been corrected for industrial CO2 assuming a preindus- 
trial atmospheric concentration of  290 ppm. With hm 
and A evaluated according to Table 2, the gravitational 
flux is thus computed to be: 

F ° = 3.454 × 1015g of  Cyr  -1 .  

In Table 2 this flux is rounded to 3.5× 1015. The 
steady-state abundance of  carbon-total in the deep 
oceans, Ndo, to be compatible with the above calcu- 
lation, is computed as a function of  the concentration, 
Nmo/Wm, of  surface water and of  its ratio to that of  
deep water which is given by the factor 3too (see equa- 
tion (8.28)), i.e.: 

Ndo = (ha/hm) (Nmo/[J m o ) (11.43) 

where W d / W  m is replaced by hd/hrn in accordance with 
equations (11.4) and (11.8) and where 3too is equal to 
the concentration ratio: 

3m ° = 2.09/2.33. 

The steady state 1 4 C / C  ratio of  deep water relative to 
surface water, to be compatible with the assumption of 
isotopic fractionation in the gravitational flux, is com- 
puted by solving the first equality of  equation (8.16) for 
Rdo/Rmo, i.e.: 

14 Olmd 
14Rdo / 14Rmo . . . . .  (11.44)  

1 + 14X/kd,n 

(This equation is analogous to equation (11.16) for the 
atmosphere biosphere exchange.) For 13C, since 13h is 
equal to zero (cf. equation (2.27)): 

13Rd ° / 13Rm ° = 13am a . (11.45)  

The isotopic fractionation factor, O~md , is computed by 
the expression: 

( Nm°  hd ) (1- 
Odrn d = Olrn g "l" 

\Nao hm 
(11.46) 

where W d / W  m is replaced by ha/hm in equation (8.17) 
as in the derivation of equation (11.43). The quantities 
Nmo, Nao, and ha/h m are computed with the same 
values used to compute Fg o by equation (11.41). 
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The isotopic ratios of  deep water relative the 
a tmosphere ,  Rdo/Rao, for both  isotopes,  are computed  
by the relat ionship:  

R ao/Rao = (R ao/Rmo) (R m o/Rao) (11.47) 

Table 4. Preindustrial reservoir abundances and isotopic ratios for the 
the standard case (If gravitational flux is included, figures are en- 

closed in parentheses) 

Carbon total 

Nbo, 
Nao, 

where Rmo/Rao is assigned the value computed  Nmo, 
previously for the case wi thout  gravi ta t ional  flux, i.e. by Ndo, 
use of  equa t ions  (11.12) and  (11.13). 

1 1.4 Determination ofpreindustrial conditions 

The four-reservoir  model  predicts per tu rba t ions  of  
the ca rbon  cycle against  a backg round  steady-state 
which ideally would be established wi thout  reference to 
that  pe r tu rba t ion .  But all but  a few features of  the 
ca rbon  cycle when first observed were already affected 
by industr ia l  CO2. Indeed,  the on ly  chemical  da ta  used 
in the fo rmula t ion  of  the present  model  which are 
pract ical ly free of  inf luence  of  the industr ia l  CO2 
pe r tu rba t ion  are the measurement s  of  deep ocean 
carbon .  In a few other  cases, no tab ly  respecting the land 
biosphere,  the per tu rba t ions ,  a l though not  negligible, 
are so small  relative to the uncer ta in ty  in the est imated 
con t empora ry  values that  it would  be unjus t i f ied  to 
adjus t  the latter to reflect pre indus t r ia l  condi t ions .  But 
in other  cases, such ad jus tmen t s  were a t tempted.  If 
possible these were done  wi thout  recourse to the model  
itself. For  example,  the concen t ra t ion  of  ca rbon- to ta l  in 
surface ocean water was est imated f rom the presumed 
change in CO2 part ial  pressure between the late nine-  
teenth century  and  recent t imes (Keeling, 73b). In other 
cases the preindustr ia l  values were calculated by the 
model  itself to avoid inconsis tency in calculat ing pertur-  
ba t ions .  A few of  these parameters ,  for example the rare 
isotopic ratios of  ca rbon  in surface ocean water, provide 
inputs  to the model  which affect the values of  the Suess 
Effect  calculated for all of  the reservoirs, i.e. they inf lu-  
ence one or more  of  the values assigned to the pertur-  
ba t ion  coefficients,  ki, *ki or ki', and  hence inf luence 
the calcula t ion of  the elements  of  the m.atrix, r (equat ion 
(9.25)). In the remain ing  cases, the steady-state values 
are used only  to establish the Suess Effect for the parti-  
cular  reservoir involved.  

In subsect ion 1 1.2 and  1 1.3, above,  all o f  the steady- 
state calculat ions  are explained.  But since the 
me thodogy  is somewhat  complex and  difficult  to trace 
back to the original  da ta  base, I have summar ized  in 
Table  4 the full set of  pre indust r ia l  value for the 
s tandard  case with the sources of  data  indicated by foot- 
notes.  If the inclus ion of  a gravi ta t ional  flux leads to 
different  values than  otherwise,  these values are 
included in the table below the cor responding  values. 
They are enclosed in parentheses.  

For  the interested reader,  the fol lowing addi t ional  
comments  are offered to aid in explaining the results 
listed in Table  4. 

None  of  the assigned reservoir abundances ,  Nio, are 
dependent  on  results of  the pe r tu rba t ion  model .  The 
pre indust r ia l  a tmospher ic  a b u n d a n c e ,  Nao, depends,  

carbonate dissolution 
Notes either absent or included 

land biosphere (l) 1560 Gt 
atmosphere 
for A.D. 1886-1956: (2) 600 
for A.D. 1956-1978: (2) 642 
surface ocean (3) 796 
deep ocean (4) 39536 

(5) (44076) 
Isotopic ratios and factors 

13 C 14 C 

carbonate carbonate 
dissolution dissolution 

Notes absent included absent included 
Rbo/Rao (6) 0 . 9 8 2 0  0 . 9 8 2 0  0 . 9 5 7 4  0.9574 
Rmo/Rao (7) 1 .0090  1 . 0 0 9 0  0 . 9 6 4 9  0.9649 
Rdo/Rao (8) 1 .0090  1 . 0 0 9 0  0 . 8 4 9 0  0.8490 

(9) (1.0072) (I .0072) (0.8460) (0.8460) 
Rcmo/Rao (10) --  1.0080 -- 0.9630 
Rcao/Rao (10) --  1.0080 --  0.8473 

( 1 0 )  - -  ( 1.0062) -- (0.8443) 
Rao/R , (11) 0.99367 0.99371 -- --  
Ot=d (12) 1.0 1.0 1.0 1.0 

(12) 0 . 9 9 8 2  0 . 9 9 8 2  0 . 9 9 6 5  0.9965 
813C( ff/O0 ) 

6t3Cb, land biosphere (13) -24.48 -24.44 
813Ca, atmosphere (13) -6.40 -6.36 
t~13C m surface ocean (13) 2.64 2.69 
t~ InCa ~ deep ocean (13) 2.64 2.69 

(13) (0 .86)  (0.90) 

Notes 
(1) Rounded from Table 2. Gt = l015 g of C. 
(2) Rounded from Table 3. 
(3) By equation (11.5) using data from Table 2. 
(4) Based on equation (I 1.9) using data from Table 2. 
(5) Based on equation (11.43) 
(6) For J4C, by equation (tl.16); for 13C by equation (ll.17) using 

data from Table 2. 
(7) For 14C by equation (ll.12); for t3C by equation (ll.13) using 

data from Table 2. 
(8) For 14C, computed as the product of 14Rdo/14Rmo, taken from 

Table 2,_and 14Rrao/14Rao as given above. For 13C, set equal to 
laRmo/13Rao, above, in accordance with equation (l I. 14). 

(9) Same as above except that laRdo/14Rmo by equation ( I 1.44) using 
data from Table 2. 

(10) For both 13C and 14C compute d in accordance with equation 
(i I. 15) as the product of c~,c as quoted in Table 2, and R,o/R~o as 
given above. 

(1 l) Calculated by combining equations (11.36) and (11.37) to elimi- 
nate Rat/R ° , and then evaluating the resulting expression with 

813Ca, taken from "Fable 3, .YLe from Table 2, and 13Sat, calcu. 
lated by the model for the standard case. The ratios are expressed 
to five decimal places to reveal small differences between cases. 

(12) By equation (11.46) as described in the text following that 
equation. Set equal to unify if gravitational flux is zero. 

(13) By equation (11.40) with laRio/laRao as above, 13R~o/13R • as in 
this table, and 13R • from Table 2. 

however,  upon  the CO2 concent ra t ions  for the 
beginning  and  end of  the t ime interval  in which 
exponent ia l  growth in industr ia l  CO2 is assumed to have 
occurred,  as discussed in the text accompany ing  
equa t ions  (l 1.18) to (1 1.24), above.  

The deep ocean abundance ,  Ndo, by means of  
equa t ion  (11.43) was assigned a value consistent  with 
the steady-state equa t ion  (1 1.41) used to establish the 
gravi ta t ional  flux, Fg o. If Fg o is assumed to be zero, the 
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concentration of  surface and deep water is required to 
be equal (consistent with equation (11.7)). Since it was 
desirable that the surface ocean concentration be the 
same in all cases (except when the parameter, h a , was 
varied) the deep water concentration, Ndo/Wd, varies 
Prom case to case. 

The isotopic ratio, Rdo/Rmo, determined by 
equations (11.44) and (11.45) and hence the ratio Rdo/ 
Rao established via equation (11.47) likewise varies with 
Fg o for both rare isotopes. If Fg o is zero, then, similar to 
the case for Ndo, the deep water value is made to agree 
with that for surface water. The related ratio, Rcdo/Rao, 
varies in a similar way with Fg o (see equation (11.15)). 

Because of  the ambiguities associated with adapting 
the box diffusion model of  Oeschger et al. (75) to the 
ocean with a gravitational flux, care was taken that 
none of  the perturbation coefficients, ki, *ki, or ki' be 
expressed in terms OfNdo , or Rdo. Indeed, if the gravi- 
tational flux, Fg o is equal to zero, the only time de- 
pendent predictions affected by the assignment of  deep 
water steady-state values are the isotopic ratios, Rd/Rao 
and the shift in 13C for deep water. The resulting vari- 
tions in these latter ratios are so slight as to be of  little 
interest. 

The steady-state isotopic ratios relative to atmos- 
pheric CO2 both for reservoirs, RioRao, and for solid 
carbonates, Rcio/Rao, were established solely in terms 
of  fractionation factors and the steady-state exchange 
coefficients, kij. In all instances these assigned values 
were obtained independent of  a consideration of  pertur- 
bations. The calculated preindustrial 13C12C variations, 
from standard PDB, on the other hand, depend on 
knowing RaoR O, the preindustrial 13C/C ratio of  atmos- 
pheric CO2 relative to PDB. Therefore,  as indicated by 
equation (11.37), these quantities, ~13Cio, differ from 
case to case as the predicted 13C atmospheric Suess 
Effect,  13Sal, varies. The differences are slight however: 
approximately 0.04%0 lower t513Cio values are calcu- 
lated when carbonate dissolution is included in the 
model, approximately 0.002e/ee lower values when the 
gravitational flux is included. The latter differences do 
not appear in the table, since the/~13C values are shown 
rounded to the nearest 0.01%e. 

If Fg o is not zero, the time dependent isotopic ratio 
for deep water carbonate, Rcd, enters into the vertical 
source matrix, [kij'/Rao ] (see equation (10.44)) and the 
source vector [*Yi/Rao ] (see equation. (10.47)); it thus 
influences the predicted isotopic effects for a l l  reser- 
voirs. But the effect is far less than that which arises, 
because radioactive decay of  biogenic carbonate has 
been neglected (see equation (11.15)). 

11.5 Computational results for  the four reservoir 
model 

The four-reservoir model, with its parameters set 
according to the standard case listings in Table 2 and the 
industrial CO2 source factors in Table 3, produces the 
results shown in Table 5. As an aid in explaining the 
significance of  the equations of  Sections 9 and 10 some 
of  the intermediate computations are displayed as well 
as the desired reservoir fractions and isotopic effects. 
The results are arranged in matrices identified by the 
symbols of  equations (9.7) to (9.26) and (11.1). The 

order of  rows and columns is: land biosphere, atmos- 
phere, surface ocean, and deep ocean. 

Table 5. Matrices used in the solution of  the standard case without 
gravitational flux 

Carbonate dissolution absent 

For carbon- 13ta) 

[kv] = 

[t 3 kij  ] = 

13 kij" 

Rao 

0 
1 

0 
13g = 0 

0 
0.98( 
0 
0 

[A13r,] = 

-0.1M54545 -0.0122714 0 0 
0 0.190528 -0.913591 0 
0 -0.132802 1.138540 0 
0 0 0.179494 0.045454~ 

"0.0621212 -0.041475 0 0 
-0.0166667 0.217872 -0.100359 0 
0 -0.130943 0.325308 0 
0 0 -0.179494 0.0454545 

--0.0163667 0.029424 0 0 "1 

J 
0.0163667 -0.029424 -0.799538 0 
0 0 0.799538 0 
0 0 0 0 

['0.146150"] [" 0.146150 l 
[ 0.541354 / [ 0.541354 
/0.063145/ [rd = | 0.063145 

~3 r = /0.249351/ L 0.249351 
| 0.1407441 I 0.143324 1 
10.537198|  0.537198 
[ 0.061036 / tl3ril = 0.060491 
L 0.241023.J 0.238873 

-0.004157 [13Si]  = | -0.073054 
-0.002654 [ -0.041156 
-0.010478 L-0.003302 

[--0.000139 7 
] -0.000447 l • 1613C12 -- ~t3C11] = |-0.000263 l 
L-0.000o21 _1 

For carbon- 14 

1 4 g  = 

0 
1 

0 
0 
0 
0 
0 

_0 

[Aa4r,] = 

14 r = 

-0.457449- 
0.812589 
0.100904 
0.543956 

-0.650457 
0.599641 
0.007985 
0.042831 

- -0.457449- 
0.812589 

[ril = 0.100904 
0.543956 

: _0.679417 = 
0.599641 

p4ri] = 0.008275 
0.050451 

I i  221968" 
.212948[ 
.0926291 [14Si] = 
.4935041 I 

0.011374-] 
0.025064[ 
0.0089991 
0.000974J 

Carbonate dissolution included 

For carbon- 13 

F-0.057182q 
/0.541354 I 

[rd = /0.1942691 
L_0.776069J 
F0.003271"] 
I-0.0o48111 

[at'r,[ = 1_0.003624 [ 
t--0.014321J 

For carbon- 14 

[13ri] = 

[6~sC,z - 6zsCq] = 

--0.060453"] 
0.536543 I 
0.190645 I 

. 0 . 7 6 1 7 4 8 1  

-0.0001647 
-0.000517 / 
-0.000349| 
-0.000029 J 

[--0.923736-] 
[0.812589 ] 

[ril = [0 .324057[  [14ri] = 
L 1.767254_J 
r-0.221617q 
[-0.210669 I 

IA13r,] = /_0.093736 I P4Sd = 
L-0.342890_J 

--1.145354 
0.601920 
0.230321 

_ 1.424363 

I 
-0.011634" 
-0.024796 
-0.008914 
-0.000675_ 

Note 
(a) (13S,) is for A.D. 1978; (613C12 - 613C,1) is for A.D. 1956 to 
1978; (t4S,) is for A.D. 1954. 
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12. Numerical predictions using the four-reservoir 
model 

1 2 . 1  R e s u l t s  f o r  c a r b o n - t o t a l  

For the choice of  parameters designated in section 11 
as a "s tandard case", the four reservoir model predicts 
that industrial CO2 after entering the air, is redistri- 
buted between the atmosphere, land biosphere, and a 
two layer vertically diffusive ocean as shown in Table 6. 

Table 6. Predictions for carbon-total for the standard case without 
gravitational flux 

Time interval: 1886 - 1956 1956 - 1978 
Carbonate dissolution: Absent Included Absent Included 

Reservoir fractions (%) 

r b, land biosphere -45.74 -92.37 14.61 -5.72 
r a, atmosphere 81.26 81.26 54.14 54.14 
r m, surface ocean 10.09 32.41 6.31 19.43 
rd, deep ocean 54.40 176.73 24.94 77.61 

Rates of change (Gt/yr) 
),~, industrial CO 2 input 2.00 2.00 5.67 5.67 
ft,, surface ocean 0 1.92 0 2.52 

carbonate dissolution 
r/d, deep ocean 0 0.04 0 0.05 

carbonate dissolution 
Nb, land biospheric C -0.92 -1.85 0.83 -0.32 
Na, atmospheric C 1.63 1.63 3.07 3.07 
N m, surface oceanic C 0.20 0.65 0.36 1.10 
N.'a, deep oceanic C 1.09 3.53 1.41 4.40 
C m, surface oceanic 0 0.30 0 0.51 

carbonate 
Ca, deep oceanic 0 1.66 0 2.07 

carbonate 

If  carbonate dissolution does not occur in the oceans, 
the model predicts that 14% of  the industrial CO2 
produced between A.D. 1956 to 1978 has entered the 
land biosphere. The biospheric growth factor, Ha, for 
this case is equal to 0.29, i.e. for every 1% increase in 
atmospheric CO2 from its preindustrial value, plant 
growth is assumed by the model to increase by 0.29%. 
This" biospheric uptake is considerably smaller than 
predicted by Keeling (73a) and Bacastow and Keeling 
(73) because their two layer ocean models predicted a 
less effective oceanic uptake of  industrial CO2 than the 
present model and hence, by difference, a greater bio- 
spheric uptake. The predictions of  the present model, 
for all reservoirs, are close to those of  Oeschger e t  a i .  

(75) for an exponentially increasing industrial CO2 
source with an e-fold time,/z-l, of  35 yr. In particular, 
these authors derived the relative fractions: 

r b : r a : r m : r d = 12.1% : 52.8% : 5.9% : 29.2% 

while the present model predicts: 

r b : r a : r m : r a = 14.6% : 54.1% : 6.3% : 24.9%. 

This good agreement arises, of  course, because the 
present model and its standard case were chosen to be 
compatible in most respects with the vertical diffusion 
model of  Oeschger e t  a l .  (75). 

If carbonate dissolution is assumed to occur, the 
present model predicts that the oceans have absorbed all 
of  the non-airborne industrial CO 2 produced between 
A.D. 1956 and 1978, and in additional have taken up a 
small increment from the land biosphere ( r  b equal to 
-5.7%). The growth factor, Ha, in this case is equal to 
-0.11.A negative value for Ha is not consistent with any 
reasonable mechanism for photosynthetic uptake of  
CO 2, but reflects the parametric use of  this perturbation 
factor to mimic the sum of all of  man impacts on the 
land biosphere for an exponentially rising energy 
consumption. 

For the period A.D. 1886 to 1956 the predicted par- 
titioning of  industrial CO2 is strikingly different than as 
just discussed for more recent years. This circumstance 
is a result of adopting the late nineteenth century 
average concentration of  atmospheric CO2 deduced by 
Callendar (58) from contemporary observations. His 
value of  288 ppm (see subsection 11.2, above), is far 
below the 302 ppm found by extrapolating an exponen- 
tially rising concentration for A.D. 1956 to 1978 back- 
wards to A.D. 1886. Even if the actual yearly 
production of  industrial CO2 is used in a time stepped 
version of  the present model in place of  an exponen- 
tially growing source, the model predicts about 297 ppm 
for A.D. 1886, still well above Callendar's value 
(Bacastow and Keeling, unpublished). 

In order for the present model to predict the change in 
atmospheric CO2 demanded by Callendar's nineteenth 
century atmospheric CO2 value, the airborne fraction, 
r a ,  from A.D. 1886 to 1956 must be 81%. This fraction 
implies a substantial loss of  carbon from the land bio- 
sphere. If  carbonate dissolution is absent, the loss is 
equal to 46% of the industrial CO2 input; it is 92% if 
dissolution occurs. Such a large biospheric loss is rough- 
ly what Stuiver (78) predicted from a consideration of  
13C/12C variations in tree rings. Specifically, Stuiver 
estimated that the land biosphere from A.D. 1850 to 
1950 gave up 120 Gt of  carbon while fossil fuel pro- 
duced 280 Gt; hence a biospheric fraction, rb, of  -67%. 
By adopting Callendar's value we thus test the present 
model for presumed historical changes in terms quali- 
tatively similar to Stuiver's. 

Table 6 lists, in addition to the predicted fractions, r i ,  

the rates of  reservoir increase: 

N i  - d n i / d t  (12.1) 

for the last year of  each exponential period considered 
in the computations. These predictions aid in sorting 
out the perturbation fluxes predicted by the model, 
especially the relative importance of  surface and deep 
water as the location of  carbonate dissolution and the 
subsequent redistribution of  this dissolved carbonate by 
oceanic transport. These redistributions are also 
illustrated in Fig. 10. Since they are reasonably self- 
explanatory, I shall not comment on them further. 

The results listed in Table 6 are the same whether a 
constant gravitational flux is assumed to be present or 
not. If a variable gravitational flux is assumed, the 
results are slightly different. The latter are presented in 
Section 12.4 as part of  the sensitivity analysis of  the 
four-reservoir model. 
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Fig. 10. Redistribution of  industrial CO 2 in Gt /yr  of carbon-total 
predicted by the four reservoir model for the standard case of Table 2. 
Plo t  a: carbonate dissolution absent; Plot b: carbonate dissolution in- 
cluded. A r r o w  f r o m  lef t  to atmosphere: industrial CO 2 source. 
A r r o w s  f r o m  lef t  to oceanic reservoirs: dissolution of biogenic 
carbonate. Arrows  between reservoirs: net exchanges of carbon-total. 
Figures in parentheses are net increases of  carbon-total within 

reservoirs. All figures are for A.D. 1978. 

This model provides a test o f  the proposal advanced by 
Woodwell  et aL (78) that the land biosphere has in recent 
years released to the atmosphere much larger amounts  
o f  CO2 than indicated by models  in which the oceanic 
CO2 transport is prescribed by the steady-state radio- 
carbon distribution. According to Woodwel l  et al. the 
probable range in release o f  carbon from the biosphere 
owing to man's  activities is 4 to 8 Gt/yr.  They believe 
that the release may be as high as 18 Gt/yr.  The 
authors are aware that such large releases pose a 
problem for carbon cycle modelers.  The authors state 
(ioc cit. p. 245): 

"If  the current appraisals are correct, the contempor-  
ary biotic release of  carbon is approximately equal to 
the fossil fuel release. The total for both sources exceed 
10 [Gt] annually. Of  this about 2,3 [Gt] accumulates in 
the atmosphere.  The remainder probably enters the 
oceans,  but the mechanism for this remains puzzling. 
The apparently erroneous assumption that the biota is a 
contemporary sink for CO2 arose because the data on 
oceanic mixing seem to show that the oceans have a 
limited capacity for absorbing CO2 in the short run o f  
years or decades ... and other sinks have seemed necess- 
ary. The problem is still more puzzling if the biota not 
only is not a sink for fossil fuel carbon but is an 
additional source o f  CO2. The validity and appropriate- 
ness o f  the models o f  oceanic mixing are obviously in 
question . . ."  

An extreme "upper limit" for the oceanic uptake of  
CO2 from all sources may be obtained for each o f  the 

four cases just considered repeating the calculations 
with the eddy diffusion coefficient,  K, raised to such a 
high value that the oceans below the surface layer are in 
essence mixed instantaneously. Results o f  such a calcu- 
lation are listed in Table 7, in which the value for K has 
been increased 100 fold with the biospheric growth 
factor, [3a, adjusted so that the predictable airborne 
fraction is the same as for the standard case. The 
exchanges o f  carbon for A .D .  1978 are displayed in Fig. 
11. Without carbonate dissolution the upper limit for 
biospheric release o f  carbon to the air as CO 2 in 1978 is 
about 3.4 Gt, with dissolution it is about 4.6 Gt. 

Table 7. Predictions for carbon-total with the eddy diffusion coeffi- 
cient K o f  the standard case raised by a factor of 100 

Time interval: 1886 - 1956 1956 - 1978 
Carbonate dissolution: Absent Included Absent Included 

Reservoir fractions (%) 

r b, land biosphere -244.28 -309.71 -59.83 -80.41 
r a, atmosphere 81.26 81.26 54.14 54.14 
r,,, surface ocean 4.79 11.15 2.61 5.81 
r a, deep ocean 258.23 608.02 103.09 232.21 

Rates of  change (Gt/yr) 

3% industrial CO 2 input 2.00 2.00 5.67 5.67 
m, surface ocean 0 5.68 0 6.18 

carbonate dissolution 
~ ,  deep ocean 0 0.14 0 0.15 

carbonate dissolution 
/q b, land biospheric C -4.89 -6.19 -3.39 -4.56 
Na, atmospheric C 1.62 1.62 3.07 3.07 
Nm, surface oceanic C 0.10 0.22 0.15 0.33 
/~/d, deep oceanic C 5.17 12.16 5.84 13.16 
Cm, surface oceanic 0 0. l0 0 0.15 

carbonate 
t~d, deep oceanic 0 5.71 0 6.18 

carbonate 
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Fig. I 1. Redistribution of industrial CO2 as in Fig. 10 except that eddy 
diffusion coefficient, K, for vertical transport in the oceans is in- 

creased 100 fold from standard case. 
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The release is still higher if, also, the coefficient for 
CO2 uptake by the oceans, kam, is increased by 50070 as 
in the sensitivity analysis of  subsection 12.4, below. This 
increase in kam leads to a predicted biospheric release of  
5.1 Gt of  carbon in A.D. 1978 without dissolution, 7.2 
Gt with dissolution. The rates of  release could be raised 
still further by arbitrarily increasing the gravitational 
flux of  carbon,  Fg o, as a function of  the concentration 
of  carbon in surface water, i.e. by setting the pertur- 
bation parameter ,  ~g above zero. An increase in Fg 
turns out, however, to have very little effect on the 
predicted biospheric release of  CO2 unless values far in 
excess of  unity are prescribed for Bg. In any case the 
rates of  biospheric release with /3g equal to zero are 
already large enough, when K alone is increased, to test 
the isotopic consequences of  large biospheric releases 
compensated by large oceanic uptake, the main reason 
for my introducing this calculation. 

An eddy diffusion coefficient, K, 100 times the value 
calculated f rom the radiocarbon distribution is ridicu- 
lously high as a parameter  o f  oceanic circulation. Such a 
value implies that 14C/C ratios for deep water are virtu- 
ally the same as for pre-bomb surface water, whereas 
observed ratios (10 to 20070 lower) indicate circulation 
times of  the order of  1000 yr. An abundance by other 
oceanic evidence also argues against a diffusion rate 
substantially larger than the value of  K chosen for the 
standard case. I f  carbonate dissolution is included in the 
model, this dissolution is assumed to keep pace with the 
rapid circulation so that every part  o f  the oceans re- 
mains in equilibrium with calcium carbonate sediments. 

A more reasonable upper limit for biospheric release 
must remove f rom the presumed rapidly circulating 
oceanic reservoir most of  the waters below 1000 meters, 
i.e. about  three fourths of  the ocean 's  volume. It 
follows that a reasonable upper limit for biospheric CO2 
release probably  lies near 1 Gt /y r ,  perhaps 2 Gt /y r  if 

the standard case value for kam is significantly less than 
the true value. The calculation with high K is useful, 
however, to test how sensitive rare isotopic carbon is as 
a possible indicator of  large net biospheric releases of  
CO2. This topic will be discussed further in subsection 
12.4, below. 

Predicted changes in reservoir fractions of  carbon- 
total, as other model parameters  take on non-standard 
values, are indicated in Table 8. For the ranges chosen 
(see subsection 12.4), the reservoir fractions vary little 
f rom the standard case. Although changes in fractions 
are shown only for A.D. 1956 to 1978 with carbonate 
dissolution absent, relative insensitivity is also found 
with carbonate dissolution included and for the earlier 
period, A.D. 1886 to 1956. 

12.2 Results for  rare isotopic carbon 

The isotopic predictions for the standard case appear  
in Table 9. They are recopied in more recognizable per 
mil and per cent notation from the matrix listings of  
Table 5 and are supplemented by listings for additional 
time periods and intervals. To gain a perspective as to 
the reasonableness of  these predictions it is worthwhile 
to compare  them to available observational data. The 
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Table 8. Reservoir fractions for carbon-total with various choices of 
input parameters for A.D. 1956 - 1978 

Parameter varied ~a rb I"o rm ra 

Carbonate dissolution absent 

Standard case 0.2905 14.61 54.14 6.31 24.94 
Fbo (increased 20%) 0.2421 14.61 54.14 6.31 24.94 
h a (increased 20%) 0.3765 18.94 54.14 5.44 21.49 
kam (increased 50%) 0.2468 12.41 54.14 6.76 26.70 

(increased to 9.445) 0.3199 16.09 54.14 6.02 23.76 
K (increased 100fold) -1.1895 -59.83 54.14 2.61 103.09 
B, (increased to 1) 0.2808 14.13 54.14 6.29 25.45 

Carbon dissolution included 

Standard case -0.1137 -5.72 54.14 1 9 . 4 3  77.61 
Fbo (increased 20%) -0.0947 -5.72 54.14 19 .43  77.61 
h a (increased 20%) 0.0081 0.41 54.14 17 .12  68.39 
]Cam (increased 50%) -0.2384 -12.01 54.14 21.80 87.07 

(increased to 9.445) -0.0727 - 3.66 54.14 18 .65  74.51 
K (increased 100fold) -1.5986 -80.41 54.14 5.81 232.21 
~, (increased to 1) -0.1445 -7.27 54.14 19 .14  80.81 

Table 9. Isotopic predictions for the standard case without gravi- 
tational flux 

Time: 1956 1978 1956- 1956 1978 1956- 
1978 1978 

carbonate dissolution: Absent Included 

b13( %0 ) 

land biosphere -24.57 -24.71 -0.14 -24.53 -24.70 -0.16 
atmosphere -6.69 -7.14 -0.45 -6.69 -7.21 -0.52 
surfaceocean 2.49 2.22 -0.26 2.48 2.13 -0.35 
deep ocean 2.63 2.61 -0.02 2.67 2.64 -0.03 

Time: 1950 1954 1950 1954 
carbonate dissolution Absent Included 

14C Suess Effect (%) 

land biosphere -1.03 -1.14 -1.05 -1.16 
atmosphere -2.29 -2.51 -2.27 -2.48 
surface ocean -0.82 -0.90 -0.81 -0.89 
deepocean -0.09 -0.10 -0.06 -0.07 

predicted shifts in 613C for atmospheric CO2 from A.D. 
1956 to 1978 are: 

~ 1 3 C 2  - - ~ 1 3 C  1 : I ~ "  

4 5 % 0  , carbonate dissolution 
absent 

5 2 % o  , carbonate dissolution 
included 

Both predictions agree within stated accuracy with the 
direct measurements reported for Keeling (79a): 

~ 1 3 C 2  _ ~ 1 3  C = - 0 . 5 5 ÷ 0 . 1 4 % 0  
a l  

The predicted 13C shift is closer to the observed value, 
if carbonate dissolution is included in the model, but the 
uncertainty in observations is so large compared with 
the shift, that this prediction is not particularly favored. 

For the atmospheric 14C Suess Effect the predicted 
values for A.D. 1954 are: 

[ -2 .51%, carbonate dissolution absent 
14 S ) 

a ( -2 .48%,  carbonate 1 c,issolution included. 
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The best estimate of  the observed 14C Suess Effect for 
A.D. 1954 is difficult to obtain from the literature 
values listed in Table 1, because the effect was probably 
increasing rapidly after A.D. 1940, and because some of  
the data are for samples involving several years of  tree 
growth. To obtain a best estimate for A.D. 1954 based 
on these data, Bacastow and Keeling (73) used a six 
reservoir model which they forced to reproduce as close- 
ly as possible the data of  Lerman et ai. (70) for the 1860s 
and the data of  these same investigators and of  Suess 
and his coworkers for observations after A.D. 1940. 
They deducted for A,D. 1954: 

1-2.8%, relative to preindustrial conditions 
1 4 S ) 

a t -2.5%, relative to the A x 4C scale (Broecker 59). 

The same calculation indicates a Suess Effect of  about 
0.3070 in the 1860s, consistent with the observations 
o f  Lerman et al. (70) that tree rings during that decade 
exhibit 14C/C ratios close to zero on the AI4C scale. A 
model similar to the present one, but with the actual 
industrial CO2 source used instead of  an exponential 
approximation (Bacastow and Keeling, unpublished), 
leads to predicted values near -2.3°70, thus -0.5% less 
negative than the observations of  Lerman, Suess and 
their coworkers. 

This lack of  agreement is not a strong basis for 
rejecting the model, however, because, as indicated by 
the scatter of  values in Table I, the observations are 
probably not reliable to much better than 0.5%. But a 
more serious problem, discussed above in the 
introduction, is the lack of  evidence for a steady-state 
for 14C prior to the industrial era. Variations in solar 
activity may produce variations in 14C production 
which lead to observed values less negative than predic- 
ted on the assumption of  steady 14C production. But 
until more is known about the solar phenomenon (see 
for example, Stuiver and Quay (79)), it is not possible to 
obtain a good time varying function for the natural 14C 
production. The model produces one definite result, 
however: the predictions are about the same whether 
carbonate dissolution occurs or not. Thus the 14C 
atmospheric Suess Effect cannot be used to distinguish 
these two possibilities. 

For surface ocean water, observational data are 
meager, as indicated in Table 1. For 13C the results of  a 
single coral from Bermuda are available for comparison 
with prediction. For A.D. 1956 to 1978 the observations 
of  this coral indicate: 

t~ laCm2 - 8laCml = - - 0 . 2 4 % 0  

whereas the model predicts: 

i 
--0.26%0o, carbonate dissolution 

absent 

~ l S c  2 -- ~ 1 3 C m l  = 

--0.35%o,, carbonate dissolution 
included. 

With respect to preindustrial times the observations 
indicate a shift or -0.500700, whereas the model predicts 
-0.42°7o if dissolution is absent, -0.56%00, if present. 
predictions and observations agree within experimental 
precision (which is the order of  0.1 0700.But the shifts are 
so small that it is not possible to decide whether the 
observations actually support either prediction. 

For 14C, data are available for two corals but the 
nineteenth century coral values of  Nozaki et al. (78) are 
too scattered to estimate a Suess Effect. For the Florida 
coral of  Druffel and Linick (78), which yielded steady 
nineteenth century values, these authors themselves esti- 
mated that: 

14S = - 1 . 2 %  
m 

whereas the model predicts: 

14Sm = t - .90% with carbonate dissolution absent 

- .89% with carbonate dissolution included 

The agreement is good, but the variations again are too 
small to gain much support for the model. As in the case 
of  the atmospheric effect, 14Sa, the predictions are 
about the same whether carbonate dissolution occurs or 
not. 

For the land biosphere and deep oceans no obser- 
vational data are available to estimate isotopic shifts on 
a global scale. Thus the above comparisons for the 
atmosphere and the surface oceans are the only controls 
available to test the standard case. About all that can be 
stated positively about these is that, for both isotopes, 
the agreement is sufficiently good to justify using the 
standard case for a further examination of  isotopic 
effects. 

12.3 The Stuiver approximat ion 

Stuiver (78) estimated the shift in 13C of  atmospheric 
CO2 on the basis of predicted values of  the 14C Suess 
Effect. As shown in Sections 2 and 3, his approximation 
is consistent with a model which neglects isotopic frac- 
tionation during the redistribution of  industrial CO2, 
but preserves the isotopic ratio difference between 
industrial and atmospheric CO 2. In Table 10 predictions 
for the standard case of  the four reservoir model are 
shown for A.D. 1956 to 1978 for both rare isotopes, 
with and without fractionation. 

Since the Suess Effect for either isotopic is pro- 
portional to the reservoir fraction difference, Ari, the 
Stuiver approximation can be checked through the 
relation: 

A13ri  = --13ef  a A14ri  (12.1) 
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which follows f rom equations (2.42) and (11.2). As can 
be determined f rom Table I0, the approximat ion holds 
for all reservoirs o f  the four reservoir model. It also 
holds if the perturbation exchange coefficient, k 6, and 
gravitational flux, Fgo, are non-zero although these 
cases are not shown in the table. (Also the approxi- 
mation was found to hold to the maximum number  of  8 
decimal places printed in the computer  printouts.) A 
remarkable  feature of  the approximat ion is that the 
predictions are the same for Ar i whether carbonate 
dissolution is present or absent. Thus the differences in 
prediction which occur for these two cases, when frac- 
t ionation is included, are not closely dependent on the 
different fractions of  CO2 entering the various reser- 
voirs, but are associated directly with different degrees 
of  isotopic fractionation for the two cases. 

Table 10. Isotopic predictions with and without fractionation for the 
standard case without gravi tat ional  flux, A.D. 1956-1978 

R e s e r v o i r  A l 3 r l  6 1 3 C  2 - 6 1 3 C l t * )  A I 4 r i  14Si (a )  

(%) (%0) (%) (%0) 
carbonate carbonate 
dissolution dissolution 

0600 in- in- 
absent eluded absent eluded 

no fract ionation 

land biosphere -0.3689 -0.18 -0.19 -18.47 -1.46 -1.48 
atmosphere -0.5426 -0.58 -0.58 -27.13 -4.77 -4.77 
surface ocean -0.2199 -0.22 -0.21 -11.00 -1.71 -1.67 
deep ocean -0.8685 -0.07 -0.02 -43.53 -0.14 -0.14 

with fractionation and carbonate dissolution 

land biosphere -0.3271 - -  -0.16 -19.31 - -  -1.55 
atmosphere -0.4811 - -  -0.52 -28.21 - -  -4.96 
surface ocean -0.3624 - -  -0.35 -10.86 - -  -1.65 
deep ocean -1.4321 - -  -0.03 -38.36 - -  -0.12 

with fract ionation but carbonate dissolution absent 

land biosphere -0.2826 -0.14 - -  -19.31 -1.53 
atmosphere -0.4157 -0.45 - -  -28.37 -4.99 
surface ocean -0.2654 -0.26 - -  -10.78 -1.67 
deepocean 1.0478 -0.02 - -  -44.91 -0.14 

m 

(a) Change in ~]3C is from A.D. 1956-1978; 14C Suess Effect, 14S t ~, is 
for A.D. 1978. 

For 13C when fractionation is neglected, the pre-- 
dictions for the atmospheric and biosphere are about 
31070 too high with carbonate dissolution absent, about 
13°/0 too high with dissolution included. For the other 
two reservoirs the predictions for dissolution absent and 
included are, respectively, 17°70 and 39°/0 too low. In 
either case the errors are so large as to rule out use of  the 
approximat ion except for very course estimates. With 
respect to the 14C Suess Effect the relative errors range 
from 1 to 4°10 except for the deep oceans with carbonate 
dissolution included, for which the prediction is 13% 
too large. This latter case is of  little interest, however, 
because the Suess Effect is so nearly negligible for this 
reservoir. The errors for 13C and 14C, for all reservoirs 
except the deep ocean, turn out to be of  opposite sign so 
that the Stuiver approximations,  in which the 14C Suess 
Effect is used to estimate the 13C effect, is even in 
somewhat  greater error than the model predictions 
without fractionation for 13C taken separately. 

I f  the fractionation factor for C O  2 uptake by the 
oceans is close to unity, rather than equal to 0.986 as 
assumed in the standard case (see subsection 12.4 
below), the Stuiver approximat ion is closer to being 
correct than otherwise, but the improvement  in predic- 
tion is still not sufficient to render the method reliable. 

12.4 Sensitivity tests f o r  13C and 14C 

To determine the degree to which the predicted Suess 
Effects of  the four-reservoir model are sensitive to likely 
uncertainties in the model abundances and coefficients, 
fourteen model parameters  were varied over ranges 
chosen to reflect these uncertainties. The results for the 
atmosphere and surface ocean are summarized in Figs 
12 and 13. For the case where carbonate dissolution is 
absent, they are also listed in Table I1. For 13C the 
shifts in c513C are displayed as being more convenient to 

• study than the related 13C Suess Effect.  
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Fig. "12. Shift in ~13C of surface oceans (613C.) versus atmosphere 
(tSa3C,) from A.D. 1956 to 1978 predicted by the four reservoir model 
of Fig. 6 for various choices of  input parameters as defined in Tables 2 
and 3. ct,t is an abbreviation for 13Ro/13R°o. Dashed circles enclose 
observed values as discussed in the text. Upperplot: carbonate dissol- 

ution absent. Lowerplot: carbonate dissolution included. 
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bonate dissolution included. 

Since the choices of  ranges are not critical to a sensiti- 
vity analysis, they will be only briefly explained. 

The most uncertain parameters  for carbon-total  are 
probably the land biospheric abundance,  Nbo, and the 
air-to-sea exchange coefficient, kam. I have raised the 
values of  both by 50°70 in the sensitivity tests. For h a , 
which represented the depth of  oceans having the same 
amount  of  carbon-total  as the atmosphere,  and for Fbo, 
the rate of  uptake of  carbon-total  by the land biosphere, 
the values were raised by 20070. Regarding ha, this in- 
crease essentially overcomes the bias introduced because 
a typical deep water concentration of  carbon was used 
to establish its value. For Fbo the choice is arbitrary: the 
likely error depends not only on uncertain knowledge of  
photosynthesis uptake of  carbon by land plants but also 
on what fraction of  the total to exclude from the model 
as pertaining to short cycled carbon. For all of  these 
parameters  except h a the values could just as well have 
been proport ionally lowered. The isotopic shifts for 
these cases were calculated and found to be very nearly 
equal in magnitude but opposite in sign. 

For the oceanic C O  2 evasion factor, 4, and the sur- 
face ocean perturbation function, *~m, the values were 
raised to those found for A.D. 1978 by a non-linear 
model with similar parameterizat ion (Bacastow, 79). 
These choices thus exaggerate somewhat the short- 
comings of  the present model,  since the average effect 
of  variable ~ and *q~ra will be less than the extreme 
changes from preindustrial times to the latest year 
considered in the model. For calculations involving 
carbonate dissolution, the change in ~ was made pro- 
portionally the same as for the case of  no dissolution. 

To test the possibility that the gravitational flux may 
have increased in response to human activities, the 
perturbation factor, Bg was raised f rom zero to unity. 
This was a logical but arbitrary choice since there is no 
evidence that the gravitational flux has varied. 

With respect to isotopic fractionation, the factors, 
i3c~/j, were all arbitrarily raised by 4 per mil. For 14C the 
factors, 14o/ij, a s  in the standard case, were determined 
as the squares of  the 13C factors. 
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Table 11. Shift in t5'3C from A.D.  1956 to 1978 for various choices of  
input parameters without carbonate dissolution 

P a r a m e t e r s  v a r i e d  613C12 - -  ~13C,1(°~oo) 

bio- atmos- surface deep 
sphere phere ocean ocean 

Standard case -0.1386 -0.4467 -0.2628 -0.0212 
Variations within therange ofuncertainty 

Nbo (increased by 50%) -0.1002 -0.4388 -0.2599 -0.0209 
Fbo (increased by 2007o) -0.1539 -0.4356 -0.2588 -0.0208 
h a (increased by 20o7o) -0.1403 -0.4543 -0.2847 -0.0229 
kam (increased by 50%) -0.1269 -0.4082 -0.2862 -0.0231 
~°b (increased by .004) -0.1444 -0.4635 -0.2690 -0.0216 
a ° ~  (increased by .004) -0.1463 -0.4715 -0.2552 -0.0205 
~,q (increased by .004) -0.1419 -0.4575 -0.2843 -0.0229 
a . ~  (increased by .004) -0.1386 -0.4467 -0.2628 -0.0212 

(increased to 9.445) -0.1369 -0.4419 -0.2566 -0.0206 
*~b. (increased to 1.107) -0.1425 -0.4593 -0.2589 -0.0208 
t3Raf/13Rao (increased by -0.1021 -0.3292 -0.2196 -0.0177 

0,004) 
Gravitational flux included 

F~o (increased f rom0 to -0.1379 - 0 . ~ 4 ~  -0.2586 -0.0183 
3 .5Gt  yr -~ 

3, (increased from Oto -0.1382 -0.4450 -0.2589 -0.0185 
1) 

Large variations 

K (increased 100 fold) -0.1418 -0.4208 -0.0825 -0.0656 
K (increased 100fold) -0.1295 -0.3710 -0.1042 -0.0830 

and kam (increased 
50°/o) 

c~°, (increased to 1) -0.1653 -0.5329 -0.2363 -0.0190 

For the air to sea uptake factor, t~am , the value is not 
known even within 4 °700. Laboratory experiments 
involving the absorption of  CO 2 in an alkaline solution 
(Craig, 53), suggest a preference for 12C over 13C of  
about 14°700. This value was therefore chosen for the 
standard case. Recently the fractionation effect for CO 2 
gas in water has been found to be approximately 1 0700 
(Sch6nleber, 76). If the rate determining step in CO2 
uptake is diffusion in a liquid boundary layer, as is 
often supposed (Broecker, 74, p. 125; Skirrow, 75, p. 
134; Kester, 75, p. 511), then the fractionation may be 
close to the equilibrium value (about + 1 0700) as pointed 
out by Tans (78, p. 34). Given the large uncertainty in 
t~am, all sensitivity calculations were repeated with an 
alternative standard case in which Otam was set equal to 
unity. For the atmosphere and surface the results are 
shown in Figs 14 and 15. 

The predicted Suess Effect for the land biosphere is of  
little interest because large inhomogeneities in plant 
materials prevent any reliable direct estimate of  changes 
in global average isotopic ratios. For the deep ocean the 
Suess Effect for either isotope is too small to be worth 
examining. 

For the atmosphere and surface oceans, on the other 
hand, model predictions are worth comparing with the 
observational data discussed in subsection 12.2. Hence 
it is the results of  the sensitivity calculations for these 
two reservoirs that are displayed in Figs 12 - 15. For 
13C and 14C dashed circles have been drawn to enclose 
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all predictions which lie, respectively, within 0. l%oand 
0.2°7o of  the observed values discussed in subsection 
12.2. For the atmospheric Suess Effect, since the obser- 
vations do not take into account a modulation in the 
14C source owing to variable solar activity, I have tried 
to allow for this very approximately using the results of  
a stepped model with the actual CO2 production data as 
input, similar to the procedure of  Bacastow and Keeling 
(73). I have not attempted, however, to adjust similarly 
the surface ocean Suess Effect because such an adjust- 
ment would be small relative to the uncertainty in the 
observed value. These circles very roughly display the 
probable true values assuming that the errors in the ob- 
servations data are a result only of  analytical uncertain- 
ties, not of  sampling bias. 

In all but a very few cases the predictions cluster 
relatively close to the standard case values. The only 
parameters which produce significantly different pre- 
dictions are the 13C/C ratio of  industrial CO2, 13Rf, 
(only for 13C), the air-to-sea steady-state exchange 
coefficient, Kam (mainly for 14C), and large eddy 
diffusion coefficient, K (for both isotopes). The small 
influence of  variations in the other parameters is not 
without interest, however. For example, the minor 
effect of  leaving out the gravitational flux might not 
have been anticipated from reading the recent literature 
on the importance of  this flux to isotopic calculations 
(Craig, 71). 

Table 12. 14C Suess Effect in A.D. 1954 for various choices of  input 
parameters without carbonate dissolution 

Parameters varied Suess Effect (%) 

bio- atmos- surface deep 
sphere phere ocean ocean 

Standard case -1.137 -2.506 -0.900 -0.097 

Variations within the range of  uncertainty 

Nbo (increased by 50070) -0.852 -2.435 -0.969 -0.094 
Fbo (increased by 20070) -1.232 -2.455 -0.878 -0.095 
h a (increased by 20%) -1.159 -2.571 -1.059 -0.117 
karn (increased by 50070) -0.979 -2.149 -0.996 -0.109 
a°~ (increased by 0.004) -1.132 -2.494 -0.895 -0.097 
~,= (increased by 0.004) - 1.137 -2.505 -0.900 -0.097 
~,q (increased by 0,004) -1.138 -2.508 -0.900 -0.097 
c~, (increased by 0.004) -1.137 -2.506 -0.900 -0.097 

(increased to 9.445) -1.136 -2.508 -0.900 -0.098 
*tbm (increased to i.107) -1.161 -2.558 -0.886 -0.096 

Gravitational flux included 

F~o (increased from 0 to - 1.131 -2.493 -0.880 -0.088 
3.5 Gt/yr)  

~, (increased from 0 to - 1.132 -2.492 -0.879 -0.088 
1) 

Large variations 

K (increased 100 fold) -0.993 -1.863 -0.125 -0.087 
K (increased 100 fold) -0.831 -1.446 -0.145 -0.096 

and kam (increased 
50%) 

~x°. (increased to 1) -1.135 -2.502 -0.901 -0.098 
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When Otam is changed to unity and new sensitivity 
calculations made for the other parameters  previously 
varied (Figs 14 and 15), the results for 14C are almost 
unchanged, reflecting the small influence of  isotopic 
fractionation on the redistribution of  14C from indus- 
trial CO2 injections. But for 13C the results are 
considerably different. All of  the atmospheric values are 
considerably higher, while the surface ocean values are 
slightly lower. Of  particular interest is that the results 
with large K are distinctly different f rom standard K for 
both atmospheric and oceanic 813C. This is in sharp 
contrast  to the prediction with 13Otam s e t  equal to 0.986. 
In the latter case the atmospheric 13C ratio with high K 
is indistinguishable f rom the standard case. 

Given the present state of  knowledge of  isotopic dis- 
tributions in the carbon cycle, what can we expect to 
learn f rom observations of  the Suess Effect? If  nuclear 
bomb  tests had not profoundly altered the relationships 
for 14C after A.D. 1954, this isotope would almost 
surely be the more valuable isotopic tracer to establish 
partitioning of  industrial CO2 between the biosphere 
and oceans. The 14C/C ratio of  surface ocean water 
would not be in doubt ,  and thus kam would be securely 
established. One would be able to choose easily between 
the standard case and that for rapid oceanic mixing, 
parameterized by large K. Even with our limited ability 
to establish the small shifts in 14C up to A.D. 1954 this 
isotope appears to be as likely as 13C to increase our 
understanding of  the industrial CO 2 partitioning up to 
the present time. I f  reliable 14C data f rom tree rings be- 
fore A.D.  1954 become available, it may be possible to 
draw conclusions as to whether the oceans are capable 
of  absorbing large amounts  of  industrial CO2 as 
demanded by Woodwell et ai. (78). 

For 13C, there are serious difficulties in interpreting 
the observations even if they are reliable reflections of  
global perturbations.  Several crucial global factors 
remain uncertain. In the first place, the predicted values 
of  t~13C, especially for the atmosphere,  are closely tied 
to the 13C/C ratio of  industrial CO 2, l a g f .  T h i s  means 
that we need to know how that ratio has varied as a 
function of  time from one fuel to another  and from one 
source region to another.  For natural gas, because its 
isotopic content is so variable (Schwarz, 70), this 
information is especially important .  As long as natural 
gas contributes such a large fraction to fossil fuel as it 
does today,  the average 1 3 C / C  for industrial CO2 may 
remain uncertain by as much as 2o/00.Even if the 1 3 C / C  

ratio of  each major  fuel has remained nearly constant 
over the time intervals of  interest (which may not be 
true), the shift f rom coal to petroleum, and more 
recently to natural gas means that accurate predictions 
ofl3C changes will require that 13Rf be treated as a time 
dependent parameter  in models after approximately 
A.D. 1945. 

The marked dependence of  predictions on the fossil 
fuel isotopic ratio, 13R f ,  h a s  not previously emphasized, 
but illustrates a characteristic weakness in using stable 
isotopes to elucidate geochemical processes: isotopic 
ratios of  natural substances often furnish not much 
more than better data on hitherto poorly known frac- 
t ionation factors. Thus even if 13Rfbecomes well estab- 
lished, observations are likely to tell us more about  the 

correct value of  the air-sea fractionation factor,  Otam , 
than about  partitioning of  industrial CO2, until the 
global average and regional variation of  Otam are in- 
dependently determined to high precision. 

In spite of  these problems,  13C as a tracer has the 
distinct advantage that it will continue to reflect man-  
induced distributions of  the carbon cycle in the decades 
to come. I f  fuel use continues to grow even at a 
moderate  pace of, say, only 2 O7oo per year, the average 
13C/C ratios for the a tmosphere and surface ocean 
water in 35 yr will shift as much as during the past 100 

.yr. By carefully measuring these shifts and also by 
improving our knowledge of  fractionation factors by 
deliberate experiments, it may be possible f rom 13C 
studies to learn useful details about  the fate of  industrial 
C O  2. 
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